高中立体几何都有哪些重点?
发布网友
发布时间:2022-04-22 05:04
我来回答
共1个回答
热心网友
时间:2023-07-13 13:49
高中立体几何知识点总结
立体几何是高一的知识,是比较容易拿分的知识,而且多出现于大题中。以下是我为大家精心整理的高中立体几何知识点总结,欢迎大家阅读。
高中立体几何知识点总结
1.棱柱、棱锥、棱(圆)台的本质特征
⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都平行且相等)。
⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。
⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。
⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。
2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式
3.线线平行常用方法总结
(1)定义:在同一平面内没有公共点的两条直线是平行直线。
(2)公理:在空间中平行于同一条直线的两条直线互相平行。
(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。
(4)线面垂直的性质:如果两条直线同时垂直于同一平面,那么两直线平行。
(5)面面平行的性质:若两个平行平面同时与第三个平面相交,那么两条交线平行。
4.线面平行的判定方法。
(1)定义:直线和平面没有公共点。
(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。
5.判定两平面平行的方法。
(1)依定义采用反证法;
(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。
(4)垂直于同一条直线的两个平面平行。
(5)平行于同一个平面的'两个平面平行。
6.证明线线垂直的方法
(1)利用定义。
(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。
7.证明线面垂直的方法
(1)线面垂直的定义。
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,那么,这条直线与这个平面垂直。
(3)线面垂直的判定定理2:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于平面。
(4)面面垂直的性质:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(5)若一条直线垂直于两平行平面中的一个平面,那么这条直线必定垂直于另一个平面。
8.判定两个平面垂直的方法
(1)利用定义。
(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。
9.其他定理
夹在两平行平面之间的平行线段相等。
经过平面外一点有且仅有一个平面与已知平面平行。
两条直线被三个平行平面所截,截得的对应线段成比例。
10.空间直线和平面的位置关系
直线与平面相交、直线在平面内、直线与平面平行
直线在平面外——直线和平面相交或平行,记作aα包括a∩α=A和a∥α
11.空间平面与平面的位置关系
垂直于同一个平面的所有直线(即平面的垂线)互相平行;
垂直于同一条直线的所有平面(即直线的垂面)互相平行。
;
在高中阶段,如何掌握立体几何知识点的关键技巧?
3.培养空间想象能力:立体几何涉及到很多空间图形和结构,因此具备一定的空间想象能力是非常重要的。可以通过观察实物模型、绘制立体图形等方式来培养自己的空间想象能力。4.多做练习题:立体几何知识点较多,需要通过大量的练习来巩固和提高。可以从简单的题目开始,逐步提高难度,同时要注意总结解题方法和技巧...
高中数学立体几何有哪些难懂的知识点?
高中数学立体几何是许多学生觉得难以理解的部分,以下是一些常见的难懂知识点:1.空间向量:空间向量的运算和性质是立体几何的基础,但很多学生对于向量的加减、数量积和向量积等概念和公式感到困惑。2.空间直线与平面的位置关系:判断直线与平面平行、垂直或相交是立体几何中的重要问题,但涉及到直线的方向向...
高中数学立体几何如何提分?
2.培养空间想象能力:立体几何题目往往需要我们在脑海中构建一个三维的空间模型,因此培养空间想象能力非常重要。可以通过多做立体几何题目来锻炼这方面的能力。3.学会画图:画图是解决立体几何问题的重要手段。在解题过程中,要养成画图的习惯,将题目中的条件和要求用图形表示出来,有助于更好地理解题意和...
高中立体几何要点
(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条...
高中数学中立体几何中有哪些比较难懂的知识点?
在高中数学的立体几何部分,有一些知识点对于学生来说可能比较难懂。以下是一些常见的难点:1.空间向量:空间向量是立体几何的基础,但学生可能会对向量的运算、线性相关与线性无关等概念感到困惑。此外,空间向量的应用也需要一定的思维转换,例如将平面问题转化为空间问题。2.空间直线与平面的位置关系:这...
高中立体几何都着重哪些
几何证明和向量的应用! 比如叫利用向量证明平行。或者利用等积法证明面平行。 立体几何基本上考察计算是很无聊的,大都叫证明!几何基本上以证明线线平行、线面垂直、面面平行为主。有时还会考察空间中线段的关系。 这些基本上都要靠直接证明和向量证明为主。一般高考直接几何证明为第一问,以向量证明为...
高中立体几何知识点总结
立体几何是高一的知识,是比较容易拿分的知识,而且多出现于大题中。以下是我为大家精心整理的高中立体几何知识点总结,欢迎大家阅读。高中立体几何知识点总结 1.棱柱、棱锥、棱(圆)台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相...
高中数学立体几何部分知识点
高中数学立体几何知识点二 一、平面 通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c…l,m,n…表示直线,且把直线和平面看成点的集合,...
高中生怎么才能学好立体几何?
立体几何是高中数学中的一个重要部分,它涉及到空间中的点、线、面和体的性质及其相互关系。要想学好立体几何,需要掌握一些方法和技巧。首先,要熟悉立体几何的基本概念和性质。这包括点、线、面和体的定义,以及它们之间的相互关系。可以通过阅读教材或参考资料来学习这些基本概念和性质。其次,要多做...
如何学好高中的立体几何?怎么培养空间想象力?
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:...