发布网友 发布时间:2024-10-22 09:26
共1个回答
热心网友 时间:2024-11-18 22:20
[f(x1)-f(x2)](x1-x2)<0,当x1>x2时f(x1)<f(x2),当x1<x2时f(x1)>f(x2)即为减函数,函数定义域为[-1,1]∴在不等式中需满足-1≤x≤1,-1≤2x-1≤1→0≤X≤1,奇函数有f(0)=0,∴当x>0时f(x)<0,当x<0时f(x)>0,若1≥2x-1>0,即1≥x>1/2,则f(x)+f(2x-1)<0,当-1≤2x-1≤0时,即0≤x≤1/2,f(x)+f(2x-1)=f(x)-f(1-2x)<0,∴x>1-2x即x>1/3,综上得1≥x>1/3热心网友 时间:2024-11-18 22:21
[f(x1)-f(x2)](x1-x2)<0,当x1>x2时f(x1)<f(x2),当x1<x2时f(x1)>f(x2)即为减函数,函数定义域为[-1,1]∴在不等式中需满足-1≤x≤1,-1≤2x-1≤1→0≤X≤1,奇函数有f(0)=0,∴当x>0时f(x)<0,当x<0时f(x)>0,若1≥2x-1>0,即1≥x>1/2,则f(x)+f(2x-1)<0,当-1≤2x-1≤0时,即0≤x≤1/2,f(x)+f(2x-1)=f(x)-f(1-2x)<0,∴x>1-2x即x>1/3,综上得1≥x>1/3