...1,则{an}是等差数列;(2)若数列{an}满足an+1=qan(q
发布网友
发布时间:2024-09-30 16:07
我来回答
共1个回答
热心网友
时间:2024-09-30 18:29
(1)当n≥2时,an=Sn-Sn-1=2n-2,
当n=1时a1=S1=3,
故an=3,n=12n?2,n≥2,故{an}不是等差数列.
(2)若an=0时,等式成立,数列{an}不是等比数列
(3)当n≥2时,an=Sn-Sn-1=(r-rq)?qn,n=1时,等式也成立,
∴an=(r-rq)?qn,故数列时以rq-r为首项,q为公比的等比数列.
(4)){an}是等差数列,且公差d,
∴an+1-an=d>0,
∴an+1>an,即数列为递增数列.
综合知正确的结论是(3),(4),两个,
故选:C.
...1,则{an}是等差数列;(2)若数列{an}满足an+1=qan(q
(1)当n≥2时,an=Sn-Sn-1=2n-2,当n=1时a1=S1=3,故an=3,n=12n?2,n≥2,故{an}不是等差数列.(2)若an=0时,等式成立,数列{an}不是等比数列(3)当n≥2时,an=Sn-Sn-1=(r-rq)?qn,n=1时,等式也成立,∴an=(r-rq)?qn,故数列时以rq-r为首项,q为公比的...
...数列{an}满足a1=1,a2=a(a>0)(Ⅰ)若{an}是等差数列,a2?a3=6,求a的...
(1)设等差数列{an}的公差为d,则d=a2-a1=a-1,∴a3=a2+d=2a-1,∴a2?a3=a(2a-1)=6,解得a=2,或a=-32(舍去),∴an=a1+(n-1)d=1+(n-1)×1=n;(2)设等比数列{an}的公比为q,q≠1,则q=a,an=an-1,假设数列{an+1}是等比数列,则(an+1+1)2=(an+...
...1)若{an}是等差数列,求数列{an}的通项公式;(2)若数列{an}...
(本题满分13分)解:(1)∵an+an+1=6n+1,∴an+1+an+2=6n+7,∴an+2-an=6,又数列{an}是等差数列,设其公差为d,则2d=6,∴d=3,…(3分)又a1+a2=7,∴2a1+d=7,∴a1=2,∴an=2+3(n-1)=3n-1,故数列{an}的通项公式为an=3n-1(n∈N*).…(6分)(2)由 ...
若数列{an}满足a1=1,且 an+1=an1+an(1)证明:数列{1an}为等差数列,并求...
(1)证明:由已知得1an+1=1an+1,所以数列{1an}为等差数列,且公差为1,又a1=1,所以1an=1+(n-1)?1=n,所以an=1n;(2)解:由sn=2-bn,得b1=1,bn=Sn-Sn-1=2-bn-(2-bn-1)=bn-1-bn,所以2bn=bn-1(n≥2),则数列{bn}是公比为12,b1=1的等比数列,所以bn=(...
...1)若Tn=n2,求数列{an}的通项公式;(2)若数列{an}满
1=n2(n?1)2,∴an=1,n=1n2(n?1)2,n≥2 …(4分)(2)当n=1时,a1=T1=12(1-a1),所以a1=13,当n≥2时,2Tn=1-an=1-TnTn?1,所以1Tn-1Tn?1=2,数列{1Tn}为等差数列 …(8分)1Tn=3+2(n-1)=2n+1,Tn=12n+1,an=1-2Tn=2n?12n+1 …(10分)(...
已知数列{an}满足an+1=2an+n+1(n∈N*).(1)若数列{an}是等差数列,求它的...
(1)解:由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1. ∴数列{an}的首项为-3,公差为-1; (2)证明:假设数列{an}是等比数列,则有a22=a1a3,即4(a1+1)2=a1(4a1+7),解得a1=-4,从而a2=-6,...
数列{an}中,a1=1,a2=2.数列{bn}满足bn=an+1+(-1)na...
解:(1)∵数列{an}是等差数列,a1=1,a2=2,∴an=n,∴bn=an+1+(-1)nan =(n+1)+(-1)nn,∴数列{bn}的前6项和S6=(2-1)+(3+2)+(4-3)+(5+4)+(6-5)+(7+6)=30.(2)∵数列{bn}是公差为2的等差数列,b1=a2-a1=1,∴bn=2n-1.∵bn=an+1+(-1...
已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=2...
(1)①由数列{an}是等差数列及a1+a2+a3=9,得a2=3,由数列{bn}是等比数列及b1b2b3=27,得b2=3. …(2分)设数列{an}的公差为d,数列{bn}的公比为q,若m=18,则有3+2d=3q3q2?3q=18解得d=3q=3或d=?92q=?2,所以,{an}和{bn}的通项公式为an=3n-3,bn=3n-1或an...
若数列{an}满足an+2?an+1an+1?an=k(k为常数),则称{an}为等差数列,k叫...
由{an}是以3为公差比的等差比数列,a1=1,a2=2,知数列{an+1-an}是以1为首项,3为公比的等比数列.∴an+1?an=3n?1,∴an=(an-an-1)+(an-1-an-2)+…+(a4-a3)+(a3-a2)+(a2-a1)+a1=3n-2+3n-3+…+1+1=3n?1?12+1.∴a5=34?12+1=41.故选:B.
在等差数列{an}中, a1=1,前n项的和sn满足条件S2n/S2=(4n+2)/(n+1...
(1):因为数列{an}为等差数列,且a1=1,则由等差数列性质 可得:前n项和Sn=a1n-(n(n-1)/2)*D 即Sn=n-(n(n-1)/2)*D , S2n=2n-(2n(2n-1)/2)*D 且 S2n/Sn=(4n+2)/(n+1),n=1,2,3```.(1),则将Sn,S2n代入(1)式,化简可得(2)式.因为(1)式对任意正整数都成立, ...