3.14159265358979323846264338327950288419716939937
发布网友
发布时间:2024-10-04 23:51
我来回答
共4个回答
热心网友
时间:2024-10-26 00:05
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。几千年来,古今中外一代又一代的数学家为此献出了自己的智慧和劳动。
圆周率是指平面上圆的周长于直径之比。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的记录。德国数学家柯伦于1596年将π值算到20位小数值,后来投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。1579年法国数学家韦达给出了π的第一个解析表达式,此后π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高记录。
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国首次用计算机计算π值,一下子就突破了千位数。1989年美国哥哥伦比亚研究人员用巨型电子计算机算出π值小数点后4.8亿位数,后来又算到小数点后10.1亿位数,创下新的记录。
3.1415926534378534676567754656945892056454357657326587236457836537846583746578436578328937402470230398420948209365486729801906754368587569832678937539687389753875069720671074386031023210293020375876422862356345736587364598376598376518726598271648923461789234397363259328757937508932753873182590265745854874545643457654364654764576548769776655 ……
热心网友
时间:2024-10-26 00:01
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
热心网友
时间:2024-10-26 00:07
圆周率2500位
圆周率500位
3.14159 26535 89793 23846 26433
83279 50288 41971 69399 37510
58209 74944 59230 78164 06286
20899 86280 34825 34211 70679
82148 08651 32823 06647 09384
46095 50582 23172 53594 08128
48111 74502 84102 70193 85211
05559 64462 29489 54930 38196
44288 10975 66593 34461 28475
64823 37867 83165 27120 19091
45648 56692 34603 48610 45432
66482 13393 60726 02491 41273
72458 70066 06315 58817 48815
20920 96282 92540 91715 36436
78925 90360 01133 05305 48820
46652 13841 46951 94151 16094
33057 27036 57595 91953 09218
61173 81932 61179 31051 18548
07446 23799 62749 56735 18857
52724 89122 79381 83011 94912
圆周率501-1000位
98336 73362 44065 66430 86021
39494 63952 24737 19070 21798
60943 70277 05392 17176 29317
67523 84674 81846 76694 05132
00056 81271 45263 56082 77857
71342 75778 96091 73637 17872
14684 40901 22495 34301 46549
58537 10507 92279 68925 89235
42019 95611 21290 21960 86403
44181 59813 62977 47713 09960
51870 72113 49999 99837 29780
49951 05973 17328 16096 31859
50244 59455 34690 83026 42522
30825 33446 85035 26193 11881
71010 00313 78387 52886 58753
32083 81420 61717 76691 47303
59825 34904 28755 46873 11595
62863 88235 37875 93751 95778
18577 80532 17122 68066 13001
92787 66111 95909 21642 01989
圆周率1001-1500位
38095 25720 10654 85863 27886
59361 53381 82796 82303 01952
03530 18529 68995 77362 25994
13891 24972 17752 83479 13151
55748 57242 45415 06959 50829
53311 68617 27855 88907 50983
81754 63746 49393 19255 06040
09277 01671 13900 98488 24012
85836 16035 63707 66010 47101
81942 95559 61989 46767 83744
94482 55379 77472 68471 04047
53464 62080 46684 25906 94912
93313 67702 89891 52104 75216
20569 66024 05803 81501 93511
25338 24300 35587 64024 74964
73263 91419 92726 04269 92279
67823 54781 63600 93417 21641
21992 45863 15030 28618 29745
55706 74983 85054 94588 58692
69956 90927 21079 75093 02955
圆周率1501-2000位
32116 53449 87202 75596 02364
80665 49911 98818 34797 75356
63698 07426 54252 78625 51818
41757 46728 90977 77279 38000
81647 06001 61452 49192 17321
72147 72350 14144 19735 68548
16136 11573 52552 13347 57418
49468 43852 33239 07394 14333
45477 62416 86251 89835 69485
56209 92192 22184 27255 02542
56887 67179 04946 01653 46680
49886 27232 79178 60857 84383
82796 79766 81454 10095 38837
86360 95068 00642 25125 20511
73929 84896 08412 84886 26945
60424 19652 85022 21066 11863
06744 27862 20391 94945 04712
37137 86960 95636 43719 17287
46776 46575 73962 41389 08658
32645 99581 33904 78027 59009
圆周率2001-2500位
94657 64078 95126 94683 98352
59570 98258 22620 52248 94077
26719 47826 84826 01476 99090
26401 36394 43745 53050 68203
49625 24517 49399 65143 14298
09190 65925 09372 21696 46151
57098 58387 41059 78859 59772
97549 89301 61753 92846 81382
68683 86894 27741 55991 85592
52459 53959 43104 99725 24680
84598 72736 44695 84865 38367
36222 62609 91246 08051 24388
43904 51244 13654 97627 80797
71569 14359 97700 12961 60894
41694 86855 58484 06353 42207
22258 28488 64815 84560 28506
01684 27394 52267 46767 88952
52138 52254 99546 66727 82398
64565 96116 35488 62305 77456
49803 55936 34568 17432 41125
热心网友
时间:2024-10-26 00:01
圆周率
circumference of a circle to the diameter,ratio of
圆周和直径的长度之比。
用π表示。 任何一个圆,不论其直径大小,其周长和直径长之比是一个常数,这是人类在测量圆的周长和圆的面积的实践中逐渐认识到的最早的一个特殊常数。中国古代记载“径一周三”即认为圆周率是一个常数。
人类对π的值的研究经历了漫长的过程,所得到的值越来越精确。公元前1600多年古埃及就有记载π的值为
。
古希腊阿基米德约在公元前240年通过计算圆的内切和外接正多边形周长来确定圆周率上下界,从而得到其近似值π=3.14。又过了几百年,在公元150年C.托勒密在《数学汇编》中给出了。中国魏晋时刘徽约在公元260年用割圆法计算π,不但得到了这个值,并且具有极限思想,可以求更精确的值。中国南北朝时的祖冲之进一步将π精确计算到8位数字:3.1415926<π<3.1415927,还提出了“约率”和“密率”。在西欧,文艺复兴以后才有人在π的计算上超过祖冲之。16世纪后对π的研究更加深入,1579年法国人F.韦达用古典方法计算到正3×217边形边长,求得π的值精确到10位数字。1596年荷兰人L.范·科伦求到小数点后20位。电子计算机发明以后,π的值的计算有了惊人的进展。1949年计算到2037位,而1983年计算到223(800多万)位 。对π的位数的计算是不可能有完结的时候的,因为它是一个无理数。这个事实是在1767年由J.H.朗伯证明的。因而π不能表成分数,也不能表成有限小数或循环小数。π也是一个超越数,即它不可能是任何一个有理系数多项式的根,这个事实是1882年被F.von林德曼所证明的。从而“化圆为方”这个古代难题之一被解决。即化圆为方不可能用尺规作图法作出。π这个数在角的弧度制上还有特殊的应用。弧度制规定长度和半径相等的圆弧所对的圆心角的大小为1弧度。于是,半径等于1时,圆心角的弧度数等于它对的弧长,以1弧度作为角的单位,那么周角的大小就是2π弧度,因而π就相当于180°角的弧度值。
热心网友
时间:2024-10-26 00:05
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。几千年来,古今中外一代又一代的数学家为此献出了自己的智慧和劳动。
圆周率是指平面上圆的周长于直径之比。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的记录。德国数学家柯伦于1596年将π值算到20位小数值,后来投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。1579年法国数学家韦达给出了π的第一个解析表达式,此后π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高记录。
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国首次用计算机计算π值,一下子就突破了千位数。1989年美国哥哥伦比亚研究人员用巨型电子计算机算出π值小数点后4.8亿位数,后来又算到小数点后10.1亿位数,创下新的记录。
3.1415926534378534676567754656945892056454357657326587236457836537846583746578436578328937402470230398420948209365486729801906754368587569832678937539687389753875069720671074386031023210293020375876422862356345736587364598376598376518726598271648923461789234397363259328757937508932753873182590265745854874545643457654364654764576548769776655 ……
热心网友
时间:2024-10-26 00:02
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
热心网友
时间:2024-10-26 00:07
圆周率2500位
圆周率500位
3.14159 26535 89793 23846 26433
83279 50288 41971 69399 37510
58209 74944 59230 78164 06286
20899 86280 34825 34211 70679
82148 08651 32823 06647 09384
46095 50582 23172 53594 08128
48111 74502 84102 70193 85211
05559 64462 29489 54930 38196
44288 10975 66593 34461 28475
64823 37867 83165 27120 19091
45648 56692 34603 48610 45432
66482 13393 60726 02491 41273
72458 70066 06315 58817 48815
20920 96282 92540 91715 36436
78925 90360 01133 05305 48820
46652 13841 46951 94151 16094
33057 27036 57595 91953 09218
61173 81932 61179 31051 18548
07446 23799 62749 56735 18857
52724 89122 79381 83011 94912
圆周率501-1000位
98336 73362 44065 66430 86021
39494 63952 24737 19070 21798
60943 70277 05392 17176 29317
67523 84674 81846 76694 05132
00056 81271 45263 56082 77857
71342 75778 96091 73637 17872
14684 40901 22495 34301 46549
58537 10507 92279 68925 89235
42019 95611 21290 21960 86403
44181 59813 62977 47713 09960
51870 72113 49999 99837 29780
49951 05973 17328 16096 31859
50244 59455 34690 83026 42522
30825 33446 85035 26193 11881
71010 00313 78387 52886 58753
32083 81420 61717 76691 47303
59825 34904 28755 46873 11595
62863 88235 37875 93751 95778
18577 80532 17122 68066 13001
92787 66111 95909 21642 01989
圆周率1001-1500位
38095 25720 10654 85863 27886
59361 53381 82796 82303 01952
03530 18529 68995 77362 25994
13891 24972 17752 83479 13151
55748 57242 45415 06959 50829
53311 68617 27855 88907 50983
81754 63746 49393 19255 06040
09277 01671 13900 98488 24012
85836 16035 63707 66010 47101
81942 95559 61989 46767 83744
94482 55379 77472 68471 04047
53464 62080 46684 25906 94912
93313 67702 89891 52104 75216
20569 66024 05803 81501 93511
25338 24300 35587 64024 74964
73263 91419 92726 04269 92279
67823 54781 63600 93417 21641
21992 45863 15030 28618 29745
55706 74983 85054 94588 58692
69956 90927 21079 75093 02955
圆周率1501-2000位
32116 53449 87202 75596 02364
80665 49911 98818 34797 75356
63698 07426 54252 78625 51818
41757 46728 90977 77279 38000
81647 06001 61452 49192 17321
72147 72350 14144 19735 68548
16136 11573 52552 13347 57418
49468 43852 33239 07394 14333
45477 62416 86251 89835 69485
56209 92192 22184 27255 02542
56887 67179 04946 01653 46680
49886 27232 79178 60857 84383
82796 79766 81454 10095 38837
86360 95068 00642 25125 20511
73929 84896 08412 84886 26945
60424 19652 85022 21066 11863
06744 27862 20391 94945 04712
37137 86960 95636 43719 17287
46776 46575 73962 41389 08658
32645 99581 33904 78027 59009
圆周率2001-2500位
94657 64078 95126 94683 98352
59570 98258 22620 52248 94077
26719 47826 84826 01476 99090
26401 36394 43745 53050 68203
49625 24517 49399 65143 14298
09190 65925 09372 21696 46151
57098 58387 41059 78859 59772
97549 89301 61753 92846 81382
68683 86894 27741 55991 85592
52459 53959 43104 99725 24680
84598 72736 44695 84865 38367
36222 62609 91246 08051 24388
43904 51244 13654 97627 80797
71569 14359 97700 12961 60894
41694 86855 58484 06353 42207
22258 28488 64815 84560 28506
01684 27394 52267 46767 88952
52138 52254 99546 66727 82398
64565 96116 35488 62305 77456
49803 55936 34568 17432 41125
热心网友
时间:2024-10-26 00:01
圆周率
circumference of a circle to the diameter,ratio of
圆周和直径的长度之比。
用π表示。 任何一个圆,不论其直径大小,其周长和直径长之比是一个常数,这是人类在测量圆的周长和圆的面积的实践中逐渐认识到的最早的一个特殊常数。中国古代记载“径一周三”即认为圆周率是一个常数。
人类对π的值的研究经历了漫长的过程,所得到的值越来越精确。公元前1600多年古埃及就有记载π的值为
。
古希腊阿基米德约在公元前240年通过计算圆的内切和外接正多边形周长来确定圆周率上下界,从而得到其近似值π=3.14。又过了几百年,在公元150年C.托勒密在《数学汇编》中给出了。中国魏晋时刘徽约在公元260年用割圆法计算π,不但得到了这个值,并且具有极限思想,可以求更精确的值。中国南北朝时的祖冲之进一步将π精确计算到8位数字:3.1415926<π<3.1415927,还提出了“约率”和“密率”。在西欧,文艺复兴以后才有人在π的计算上超过祖冲之。16世纪后对π的研究更加深入,1579年法国人F.韦达用古典方法计算到正3×217边形边长,求得π的值精确到10位数字。1596年荷兰人L.范·科伦求到小数点后20位。电子计算机发明以后,π的值的计算有了惊人的进展。1949年计算到2037位,而1983年计算到223(800多万)位 。对π的位数的计算是不可能有完结的时候的,因为它是一个无理数。这个事实是在1767年由J.H.朗伯证明的。因而π不能表成分数,也不能表成有限小数或循环小数。π也是一个超越数,即它不可能是任何一个有理系数多项式的根,这个事实是1882年被F.von林德曼所证明的。从而“化圆为方”这个古代难题之一被解决。即化圆为方不可能用尺规作图法作出。π这个数在角的弧度制上还有特殊的应用。弧度制规定长度和半径相等的圆弧所对的圆心角的大小为1弧度。于是,半径等于1时,圆心角的弧度数等于它对的弧长,以1弧度作为角的单位,那么周角的大小就是2π弧度,因而π就相当于180°角的弧度值。