发布网友 发布时间:2022-05-07 22:30
共1个回答
热心网友 时间:2023-11-18 04:38
在直角三角形中,各边长度两两之间的比值是锐角的函数.每个锐角有6个三角函数,记做正弦(sin)、余弦(cos)、正切(tan或者tg)、余切(cot或者ctg)、正割(sec)、余割(csc)。关于某个角A的三角函数:(直角三角形中) sin A=角A的对边/三角形的斜边 cos A=角A的邻边(不是斜边)/斜边 tg A=角A的对边/角A的邻边=sin A/cos A ctg A=角A的邻边/角A的对边=1/tg A sec A=斜边/角A的邻边=1/sin A csc A=斜边/角A的邻边=1/cos A 三角函数可以推广到任意角。这里由于时间问题不说了。 解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。 如图4,在△ABC中、D、F分别在AC、BC上,且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC。 分析:由数形结合易知,△ABC是直角三角形,AF为斜边上的高线,CF是直角边AC在斜边上的射影,AC为所求,已知的另外两边都在△BDC中,且BD=DC=1,即△BDC是等腰三角形。因此,可以过D作DE⊥BC,拓开思路。由于DE,AF同垂直于BC,又可以利用比例线段的性质,逐步等价转化求得AC。 解:在△ABC中,设AC为x,∵AB⊥AC,AF⊥BC,又FC=1,根据射影定理,得: ,即BC= 。 再由射影定理, 得: ,即。在△BDC中,过D作DE⊥BC于E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE‖AF, 。在Rt△DEC中, ,即 ,整理得 。 说明:本题体现了基本图形基本性质的综合应用。还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法。热心网友 时间:2023-11-18 04:38
在直角三角形中,各边长度两两之间的比值是锐角的函数.每个锐角有6个三角函数,记做正弦(sin)、余弦(cos)、正切(tan或者tg)、余切(cot或者ctg)、正割(sec)、余割(csc)。关于某个角A的三角函数:(直角三角形中) sin A=角A的对边/三角形的斜边 cos A=角A的邻边(不是斜边)/斜边 tg A=角A的对边/角A的邻边=sin A/cos A ctg A=角A的邻边/角A的对边=1/tg A sec A=斜边/角A的邻边=1/sin A csc A=斜边/角A的邻边=1/cos A 三角函数可以推广到任意角。这里由于时间问题不说了。 解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。 如图4,在△ABC中、D、F分别在AC、BC上,且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC。 分析:由数形结合易知,△ABC是直角三角形,AF为斜边上的高线,CF是直角边AC在斜边上的射影,AC为所求,已知的另外两边都在△BDC中,且BD=DC=1,即△BDC是等腰三角形。因此,可以过D作DE⊥BC,拓开思路。由于DE,AF同垂直于BC,又可以利用比例线段的性质,逐步等价转化求得AC。 解:在△ABC中,设AC为x,∵AB⊥AC,AF⊥BC,又FC=1,根据射影定理,得: ,即BC= 。 再由射影定理, 得: ,即。在△BDC中,过D作DE⊥BC于E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE‖AF, 。在Rt△DEC中, ,即 ,整理得 。 说明:本题体现了基本图形基本性质的综合应用。还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法。热心网友 时间:2023-11-18 04:38
在直角三角形中,各边长度两两之间的比值是锐角的函数.每个锐角有6个三角函数,记做正弦(sin)、余弦(cos)、正切(tan或者tg)、余切(cot或者ctg)、正割(sec)、余割(csc)。关于某个角A的三角函数:(直角三角形中) sin A=角A的对边/三角形的斜边 cos A=角A的邻边(不是斜边)/斜边 tg A=角A的对边/角A的邻边=sin A/cos A ctg A=角A的邻边/角A的对边=1/tg A sec A=斜边/角A的邻边=1/sin A csc A=斜边/角A的邻边=1/cos A 三角函数可以推广到任意角。这里由于时间问题不说了。 解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。 如图4,在△ABC中、D、F分别在AC、BC上,且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC。 分析:由数形结合易知,△ABC是直角三角形,AF为斜边上的高线,CF是直角边AC在斜边上的射影,AC为所求,已知的另外两边都在△BDC中,且BD=DC=1,即△BDC是等腰三角形。因此,可以过D作DE⊥BC,拓开思路。由于DE,AF同垂直于BC,又可以利用比例线段的性质,逐步等价转化求得AC。 解:在△ABC中,设AC为x,∵AB⊥AC,AF⊥BC,又FC=1,根据射影定理,得: ,即BC= 。 再由射影定理, 得: ,即。在△BDC中,过D作DE⊥BC于E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE‖AF, 。在Rt△DEC中, ,即 ,整理得 。 说明:本题体现了基本图形基本性质的综合应用。还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法。热心网友 时间:2023-11-18 04:38
在直角三角形中,各边长度两两之间的比值是锐角的函数.每个锐角有6个三角函数,记做正弦(sin)、余弦(cos)、正切(tan或者tg)、余切(cot或者ctg)、正割(sec)、余割(csc)。关于某个角A的三角函数:(直角三角形中) sin A=角A的对边/三角形的斜边 cos A=角A的邻边(不是斜边)/斜边 tg A=角A的对边/角A的邻边=sin A/cos A ctg A=角A的邻边/角A的对边=1/tg A sec A=斜边/角A的邻边=1/sin A csc A=斜边/角A的邻边=1/cos A 三角函数可以推广到任意角。这里由于时间问题不说了。 解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。 如图4,在△ABC中、D、F分别在AC、BC上,且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC。 分析:由数形结合易知,△ABC是直角三角形,AF为斜边上的高线,CF是直角边AC在斜边上的射影,AC为所求,已知的另外两边都在△BDC中,且BD=DC=1,即△BDC是等腰三角形。因此,可以过D作DE⊥BC,拓开思路。由于DE,AF同垂直于BC,又可以利用比例线段的性质,逐步等价转化求得AC。 解:在△ABC中,设AC为x,∵AB⊥AC,AF⊥BC,又FC=1,根据射影定理,得: ,即BC= 。 再由射影定理, 得: ,即。在△BDC中,过D作DE⊥BC于E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE‖AF, 。在Rt△DEC中, ,即 ,整理得 。 说明:本题体现了基本图形基本性质的综合应用。还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法。