发布网友 发布时间:2022-05-17 17:15
共4个回答
热心网友 时间:2023-10-31 03:14
由非齐次线性方程组有三个线性无关解,可以得到齐次线性方程组的两个线性无关解。
如果题目没有说非齐次线性方程组只有三个线性无关解,此时只能得到齐次方程组有不少于两个线性无关的解。
即n-rank(A)>=2.
扩展资料:
非齐次线性方程组
有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩。
参考资料来源:非齐次线性方程组_百度百科
热心网友 时间:2023-10-31 03:15
1、一个非齐次线性方程组有三个线性独立解,这意味着该系统的一般解中有三个参数。由于系统一般解的每一个特殊解都是线性独立的,用含有三个参数的一般解的任意两个参数替换为0,就可以得到三个线性独立解。
2、证明了方程组系数矩阵的秩等于2。
定理:当线性矩阵有无穷多解时,一般解中的参数个数等于n-r(a),其中n是线性方程组的未知变量个数,r(a)是矩阵系数矩阵的秩。
证明方法简单易行:如果未知数为5,参数为3,则系数矩阵的秩为5-3=2。
3、非齐次线性方程组有四种解:无解、只有零解、非零解和无穷多解。
扩展资料:
非齐次线性方程组解的存在性:
1、非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
2、非齐次线性方程组有唯一解的充要条件是rank(A)=n。
3、非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
参考资料:百度百科-非齐次线性方程组
热心网友 时间:2023-10-31 03:15
这是因为向量组α1-α2,α1-α3,α2-α3的秩是2,是线性相关的,不能得出n-r(A)≥3
热心网友 时间:2023-10-31 03:16
α2-α3可以由α1-α2,α1-α3,表示出来,α2-α3=(α1-α3)-(α1-α2),所以线性无关的只有α1-α2,α1-α3