数学中有什么不等式?
发布网友
发布时间:2023-09-26 14:20
我来回答
共1个回答
热心网友
时间:2024-03-30 12:00
1、三角不等式
三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。
2、均值不等式
均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
3、柯西不等式
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。
4、几何平均不等式
根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。
算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。
5、杨氏不等式
杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
数学中不等式的例子有什么?
1、均值不等式:对任意的正整数n>1,正数的算术平均数不小于几何平均数。2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有 证明:采用数学归纳法:n=1时,不等式明显成立,我们假设当n=k-1时,不等式成立,那么 3、绝对值不等式:a、b是实数,则 4、二项式展开式,可以用来放大缩小数...
数学不等式有哪些?
5、四边形不等式 如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。
高中数学有哪些常用的不等式呢?
平均不等式、柯西不等式、闵可夫斯基不等式、贝努利不等式、赫尔德不等式、契比雪夫不等式、排序不等式、含有绝对值的不等式、琴生不等式、艾尔多斯-莫迪尔不等式。不等式简介如下:用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。通常不等式中的数是实数,字...
数学中有哪几个著名的不等式?
平均值均方差不等式是概率论中常用的不等式之一,它可以表示为对于任意一组实数有算术平均数大于等于平方平均数。三、柯西施瓦茨不等式:柯西施瓦茨不等式是线性代数中一个重要的不等式,用于衡量两个向量之间的内积大小,它可以表示为实数。四、马尔可夫不等式:马尔可夫不等式是概率论中一种重要的测度不等式...
高中数学不等式公式有哪些
1、均值不等式:均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有证明:采用数学归纳法:n=1时...
数学中什么是不等式?不等式有什么用?
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0。同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。数学:数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行...
数学中有哪些经典必记的不等式
比如算术平均数大于等于几何平均数 即(x1+x2+…+xn)/n ≥ n次√(x1*x2*x3…*xn)绝对值不等式 ︱a+b︱≤︱a︱+︱b︱ 伯努利不等式 设x>-1,且x≠0,n是不小于2的整数,则(1+x)^n≥1+nx 等等需要记住的
什么是基本不等式?有哪些?
三角不等式是描述三角形边长之间关系的不等式。在几何学和函数分析中,三角不等式具有重要的应用和性质。数学表达式如下:对于任意实数a和b,有:|a+b|≤|a|+|b|这一不等式告诉我们,两个实数的和的绝对值不大于它们的绝对值之和,等号成立的条件是a和b具有相同的符号。这四个基本不等式在数学中都...
数学中有哪些基本不等式?
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式(柯西-布尼亚科夫斯基-施瓦茨不等式),其一般形式为:6、赫尔德不等式 赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder)。
数学分析中,有哪些著名的不等式
1,数学中有很多著名的不等式。2,平均不等式(均值不等式) 柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 闵可夫斯基不等式 贝努利不等式 赫尔德不等式 契比雪夫不等式 排序不等式 含有绝对值的不等式 琴生不等式 艾尔多斯—莫迪尔不等式 ...