高中数学知识点有哪些?
发布网友
发布时间:2022-04-29 18:13
我来回答
共1个回答
懂视网
时间:2022-08-26 19:54
1、《集合与函数》。
子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
2、《三角函数》。
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值。
3、《不等式》。
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
4、《数列》。
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
5、《复数》。
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
6、选择题。
排除:排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项,如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度,注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法。
特殊值法:也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量,在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算。
通过推测和测量,可以得到直接观测或结果:近年来,人们经常用这种方法来探索高考题中问题的规律性.这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决。
懂视网
时间:2022-08-26 19:55
1、导数和函数:导数与函数的题型大体分为三类。i. 关于单调性、最值、极值的考察。ii. 证明不等式。函数中含有字母,分类讨论字母的取值范围。
2、圆锥曲线:仔细观察高考卷会发现圆锥曲线也是有一定的套路的。一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的。
3、即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量。在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。
热心网友
时间:2023-02-04 22:30
01
高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《立体几何》《平面解析几何》等部分, 高中数学主要分为代数和几何两大部分。代数主要是一次函数,二次函数,反比例函数和三角函数。几何又分为平面解析几何和立体几何两大部分。
一、 集合
(1)集合的含义与表示
1通过实例,了解集合的含义,体会元素与集合的“属于”关系。
2能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
1理解集合之间包含与相等的含义,能识别给定集合的子集。
2在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
1理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
2理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
3能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
函数概念与基本初等函数:
(1)函数
1进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
3了解简单的分段函数,并能简单应用。
4通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
5学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数
1(细胞的*,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
2理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
(3)对数函数
1理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
2通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
3知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
1结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
2根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
1利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
2收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二、三角函数
(1)任意角、弧度
了解任意角的概念和弧度制,能进行弧度与角度的互化。
(2)三角函数
1借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。
2借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。
3借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。
4理解同角三角函数的基本关系式:
5结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。
6会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。
三、数列
(1)数列的概念和简单表示法
了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。
(2)等差数列、等比数列
1理解等差数列、等比数列的概念。
2探索并掌握等差数列、等比数列的通项公式与前n项和的公式。
3能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。
4体会等差数列、等比数列与一次函数、指数函数的关系。
四、不等式
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
1经历从实际情境中抽象出一元二次不等式模型的过程。
2通过函数图象了解一元二次不等式与相应函数、方程的联系。
3会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
1从实际情境中抽象出二元一次不等式组。
2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
3从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(。
(4)基本不等式:
1探索并了解基本不等式的证明过程。
2会用基本不等式解决简单的最大(小)值问题。
五、立体几何初步
(1)空间几何体
1利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
3通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。
4完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
5了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
(2)点、线、面之间的位置关系
1借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理4:平行于同一条直线的两条直线平行。
定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。
2以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。
操作确认,归纳出以下判定定理。
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
一个平面过另一个平面的垂线,则两个平面垂直。
操作确认,归纳出以下性质定理,并加以证明。
一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。
两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。
垂直于同一个平面的两条直线平行。
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
3能运用已获得的结论证明一些空间位置关系的简单命题。
平面解析几何初步:
(1)直线与方程
1在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
2理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
3能根据斜率判定两条直线平行或垂直。
4根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。
5能用解方程组的方法求两直线的交点坐标。
6探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程
1回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
2能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。
3能用直线和圆的方程解决一些简单的问题。
(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
(4)空间直角坐标系
1通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。
2通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
高中数学中,哪些知识点对于提高数学成绩至关重要?
1.代数运算:包括整式的加减乘除、分式的运算、二次根式的化简等。这些是解决数学问题的基础,掌握好代数运算能够简化问题并找到解题思路。2.函数与方程:函数是高中数学的核心概念之一,掌握好函数的基本性质和图像变化规律对于解题非常重要。同时,方程的解法也是高中数学的重点,包括一元一次方程、一元二次...
高中数学考哪些
一、基础知识 高中数学的基础知识点相当广泛,包括但不限于代数、几何、三角函数等。在代数方面,学生需要掌握实数、复数、多项式、方程和不等式等内容。在几何方面,平面几何、立体几何以及解析几何都是重要的知识点。此外,集合论也是现代数学的基础,常出现在高中数学考试中。二、函数与导数 函数是高中数...
高中数学最难知识点有哪些呢?
高中数学最难的知识点有 函数:包括定义域、解析式、值域、最值、单调性、奇偶性、函数图象等。数列:包括等差数列、等比数列的通项公式与求和公式。解析几何:包括直线方程、圆的方程、圆锥曲线等。立体几何:包括点、线、面的关系,空间几何体的体积等。排列组合:包括排列、组合数的公式等。
高中数学有哪些知识点
一、函数与代数 代数式:包括整式、分式及其运算。代数方程:一元方程、二元方程组的解法及应用。函数概念:函数的定义、性质、图象等,以及常见的函数类型如一次函数、二次函数等。二、几何 平面几何:图形的性质,如三角形、四边形等,以及角度的计算。解析几何:坐标系中的点、直线、曲线的性质及方程。
高中数学的哪些知识点是必须掌握的?
1.函数与方程:包括函数的定义、性质、图像与变换,以及一元二次方程、不等式等。这些知识点是后续学习的基础,也是高考中常见的考点。2.数与代数:包括实数的性质、运算法则,以及复数的概念与运算。这些知识点在解决实际问题和推导数学公式时经常用到。3.几何与空间:包括平面几何、立体几何、解析几何等...
高中数学中的哪些知识点很重要?
数列与级数:理解数列的规律和级数的求和对于高等数学的学习非常有帮助,特别是在分析无穷过程时。复数:复数不仅仅是数学的一个分支,它在物理学、工程学和其他科学领域中都有应用,特别是在处理振动和波动问题时。离散数学:包括逻辑、集合论、图论等,这些知识点对于计算机科学和信息理论的学习至关重要。...
高中数学有哪些有趣的知识点?
高中数学有很多有趣的知识点,以下是一些例子:1.三角函数:三角函数是高中数学中的一个重要知识点,它涉及到角度、弧度和三角比等概念。通过学习三角函数,我们可以解决很多与三角形相关的问题,如求解角度、边长等。2.数列与级数:数列是一系列按照一定规律排列的数,而级数是将数列中的项进行求和的过程...
高中数学有哪些知识点
以下是高中数学中的一些主要知识点:三角函数:包括正弦、余弦、正切等函数及其应用。解析几何:研究平面和空间中点、直线、圆、球等几何图形的坐标表示和性质。数列与数学归纳法:研究数列的各种性质、递推公式等,并学习数学归纳法的基本思想和应用。函数及其图像:研究各种函数的性质、函数的极值、函数图像...
高中数学有几大板块的知识?
4、概率统计:包括概率论、数理统计等知识点,如概率、期望、方差、分布函数、假设检验等。5、数学思维与方法:包括证明、思维方法、数学建模等知识点,如归纳法、反证法、递推法、拟合法等。6、其他数学知识:包括离散数学、数论、组合数学等知识点如图论、置换群、模运算等。高中数学是由人民教育出版社...
高中数学有哪些高频知识点?
高中数学的高频知识点主要包括以下几个方面:1.函数与方程:包括函数的概念、性质、图像和变换,以及一元二次方程、不等式等。这些知识点是高中数学的基础,贯穿于整个高中数学学习过程中。2.数列与数学归纳法:数列是高中数学中的一个重要概念,涉及到等差数列、等比数列、递推数列等。数学归纳法是一种...