问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

“二甲基甲酰胺”怎样可以消解?

发布网友 发布时间:2022-04-30 15:40

我来回答

2个回答

热心网友 时间:2022-06-26 13:44

这个,首先看它的官能团

1、分子式为分子式HCON(CH3)2,所以为酰胺。酰胺是一种很弱的碱,它可与强酸形成加合物,如CH3CONH2·HCl,很不稳定,遇水即完全水解。酰胺也可形成金属盐,多数金属盐遇水即全部水解,但汞盐(CH3CONH)2Hg则相当稳定。酰胺

乙氧酰胺苯甲酯
在强酸强碱存在下长时间加热,可水解成羧酸和氨(或胺)。酰胺在脱水剂五氧化二磷存在下小心加热,即转变成腈。酰胺经催化氢化或与氢化铝锂反应,可还原成胺。酰胺还可与次卤酸盐发生反应,生成少一个碳原子的一级胺。
酰胺可以通过羧酸铵盐的部分失水,或从酰卤、酸酐、酯的氨解来制取;腈也可部分水解,停止在酰胺阶段。
低分子液态酰胺如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺是优良的非质子极性溶剂,也可用作增塑剂、润滑油添加剂和有机合成试剂。长链脂肪酸酰胺,如硬脂酸酰胺可作纤维织物的防水剂,芥酸酰胺是聚乙烯、聚丙烯挤塑时的润滑剂。N,N-二羟乙基长链脂肪酸酰胺是非离子型表面活性剂,也是氯乙烯-乙酸乙烯酯共聚物的增塑剂。N-磺烷基取代的长链脂肪酸酰胺是合成纤维的柔软剂。二元羧酸与二元胺缩合聚合形成的聚酰胺是具有优异性能的合成纤维。

肉桂酰胺
酸碱性:酰胺一般是近中性的化合物,但在一定条件下可表现出弱酸或弱碱性。酰胺是氨或胺的酰基衍生物,分子中有氨基或烃氨基,但其碱性比氨或胺要弱得多。酰胺碱性很弱,是由于分子中氨基氮上的未共用电子对与羰基的π电子形成共轭体系,使氮上的电子云密度降低,因而接受质子的能力减弱。这时C-N键出现一定程度的双键性。 然而,氮上的电子云密度降低,却使N-H键的极性增加,从而表现出微弱的酸性。如果氨分子中有两个氢原子被一个二元酸的酰基取代,则生成环状的亚氨基化合物(酰亚胺)。由于两个羰基的吸电子作用,使亚氨基的N-H键极性明显增加,氮上的氢原子较易变为质子,而呈弱酸性。例如:
水解:酰胺在通常情况下较难水解。在酸或碱的存在下加热时,则可加速反应,但比羧酸酯的水解慢得多。 N-取代酰胺同样可以进行水解,生成羧酸和胺。
与亚*反应:酰胺与亚*作用生成相应的羧酸,并放出氮气。
特别的,N,N-二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶。它是化学反应的常用溶剂。纯二甲基甲酰胺是没有气味的,但工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物。名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而二个甲基都位于N(氮)原子上。二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行。 二甲基甲酰胺是利用蚁酸和二甲基胺制造的。二甲基甲酰胺在强碱如氢氧化钠或强酸如盐酸或硫酸的存在下是不稳定的(尤其在高温下),并水解为蚁酸与二甲基胺。

2、由于有羰基,所以一定条件下可以发生以下反应

缩合
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味*结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与*或*的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与*反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可与羟基发生可逆反应,生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味*结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与*或*的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与*反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可逆反应,与羟基发生可生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护

然后知道了这些反应,自己找到适合自己的试剂和方法就可以去除了。

有什么不会的再问吧

热心网友 时间:2022-06-26 13:44

超标就是超标,有问题不能回避呀...DMF沸点高,粘度大,做溶剂用的话是比较易残留。但是DMF在有机溶剂和水中都有较好的互溶,产品是有机物的话,一般把东西溶于和水不溶大量有机溶剂中,然后用水洗几遍,再把有机溶剂减压旋干(极少量的DMF用油泵减压旋蒸还是可以除掉)把产品弄出来就行了。
惰性造句-用惰性造句

(45)排出的含有二甲基甲酰胺溶剂的空气或 惰性 气体被连续送到回收系统,通过冷却或吸收的方式被回收。 (46)没有人能选择自己的出身,但一个没有关系、没有背景的年轻人却可以努力磨炼意志、克服 惰性 、重塑身心,然后用不计功利、不患得患失的心态去实现自己的理想。丁小云 (47)他必须克服他的 惰性 并回去工作。

“二甲基甲酰胺”怎样可以消解?

3. 二甲基甲酰胺在脱水剂五氧化二磷存在下小心加热,即转变成腈。酰胺经催化氢化或与氢化铝锂反应,可还原成胺。酰胺还可与次卤酸盐发生反应,生成少一个碳原子的一级胺。酰胺可以通过羧酸铵盐的部分失水,或从酰卤、酸酐、酯的氨解来制取;腈也可部分水解,停止在酰胺阶段。4. 低分子液态酰胺如N...

惰性造句-用惰性造句

(45)排出的含有二甲基甲酰胺溶剂的空气或惰性气体被连续送到回收系统,通过冷却或吸收的方式被回收。(46)没有人能选择自己的出身,但一个没有关系、没有背景的年轻人却可以努力磨炼意志、克服懒惰、重塑身心,然后用不计功利、不患得患失的心态去实现自己的理想。丁小云(47)他必须克服他的懒惰并回去工作。(48)他认...

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
...提升额度至27000元,4.30号我打电话给光大银行确认提额 树人大学体质测试身高159.2,体重51.3。仰卧起坐26个。立定跳远1.62,体... 10分`我有个MP3可以播放视频能播放电影么? ?玫瑰花茶晚上喝好还是白天喝好 玫瑰花茶晚上喝会影响睡眠吗 睡前喝花茶好吗 睡眠不足能喝花茶吗 会吃鱼的人聪明吗 宝宝攒肚与便秘的区别是什么呢? 什么才是所谓的幸福 如何判断宝宝是否出现了攒肚? 阿华田和肉桂粉冲咖啡好吗 华为vr glass不能一边充电一边看吗? 华为vr glass支持3060显卡吗 爱普生230打印机出产编号在什么位置 钓鱼小药怎么制作 麝香钓鱼的使用方法 中药钓 肉桂、厚朴、黄柏三种混合粉末应如何鉴别?学过中药鉴定的速来!~(答 ... 膳食纤维含量较大的十种食物 黄白和肉桂的粉末中都能观察到纤维和石细胞,比较二者的纤维和石细胞有何不同? 肉桂能帮助您减肥吗? 试述在信息时代`科技文献检索`的意义及其对我们生活学习的帮助 通过信息检索课程的学习您有什么收获 医学文献信息检索的作用? 高校为什么要开设信息检索这门课程? 为什么要学习信息检索与分析利用这门课程 信息检索对大学生的学习生活信息素质有什么作用 文献检索的意义 软件工程学习信息检索做什么用?是很重要的学科吗? 学习信息检索的作用是什么 简述学习科技信息文献检索课的意义 知乎:简述学习《信息检索》课的意义,体会和建议 怎么样用CSS处理鼠标点击事件,比如2345网站导航上面的切换,就(网站 MP3 视频 图片)那一排的效果。 华为GLASS怎样解绑手柄? 华为VR glass支持MX250显卡吗? 有没有关于兄妹或姐弟关系的恋爱动漫,画面清晰,年代离现在不要太久 p站上什么标签是姐弟的,直接搜姐弟感觉不是很好看,除了姐弟还有什么标签是姐弟的呢?或者推荐一些画师 求一部日本动画的名字 里面是讲姐弟两人的 姐姐有点不正常老是幻想弟弟会对她做什么 其中 哪位大神有《姐弟的夏夜》百度云免费在线观看,崔静恩主演的? 我想找一部很老的日本动画电影,说的是姐弟俩的故事 抖音上的姐弟俩叫什么 imp社除了姐弟的关系还有什么好的作品吗? 一部欧美的关于姐弟恋的电影,男主角好像叫大卫什么的,里面好像有*戏的 求部姐弟恋的漫画! excel如何取消筛选 excel取消工作表的自动筛选后会怎么样 stata中大部分样本对应有3年数据,但是有点只有一年或两年,可以视为面板数据吗 stata如何处理面板数据中时间变量是季度的情况 用stata对面板数据进行回归,每一年都有一组回归系数是怎么做的 stata里面可以同时录入面板数据和截面数据吗?截面数据每年的值都一样,那么录入的值都一样可以吗? 如何将excel中08-10年三年数据整理成面板数据已导入stata中进行分析 求助stata面板数据指定某年数据回归
  • 焦点

最新推荐

猜你喜欢

热门推荐