零基础学数据分析应该怎么入门
发布网友
发布时间:2022-04-20 16:51
我来回答
共2个回答
热心网友
时间:2022-05-02 09:21
数据科学是一门应用学科,需要系统提升数据获取、数据分析、数据可视化、机器学习的水平。下面就简单提供一个数据分析入门的路径:
第一阶段:Excel数据分析
每一位数据分析师都脱离不开Excel。excel是日常工作中最常用的工具,如果不考虑性能和数据量,可以应付绝大部分分析工作。虽然现在机器学习满地走,Excel依旧是无可争议的第一工具。
第二阶段:SQL数据库语言
作为数据分析人员,首先要知道如何去获取数据,其中最常见的就是从关系型数据库中取数,因此可以不会R,不会python,但是不能不会SQL。DT时代,数据正在呈指数级增长。Excel对十万条以内的数据处理起来没有问题,但是往小处说,但凡产品有一点规模,数据都是百万起。这时候就需要学习数据库。
第三阶段:数据可视化&商业智能
数据可视化能力已经越来越成为各岗位的基础技能。领英的数据报告显示,数据可视化技能在历年年中国最热门技能中排名第一。
学习数据分析可以到CDA数据分析认证中心了解一下,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。
热心网友
时间:2022-05-02 10:39
想要入行数据分析师,那么有两个部分必须掌握:工具 + 数据分析方*。
先谈工具。
学习过程应该由易入难。从认识表结构、懂得表连接、掌握小数据量处理,到表在心中、只需要代码批量自动化处理、并且会通过算法实现相关性分析,这两个状态之间有三个层次。
第一个层次:当数据分析师只用面对小量数据时(一般来说小于几万行),他/她应当先学会从MySQL(一种部署在本地计算机的数据库)的Sql语法提取数据,然后用excel进行做表做图的处理,亦或是用FinbeBI或者是PowerBI做出更为精美的指标看板,以供决策者看到公司销售、运营、人力等指标的变化趋势。
第二个层次:当数据分析师面对中量级数据(也就是百万千万级数据)时,他/她会发现:excel和BI无法打开这一庞大数据集。那么怎么办呢?这时Python的批量处理数据能力就变成了入门最简单且处理最高效的工具了。Python是一种入门简单,语法简洁的编程语言,它拥有丰富的"工具库“。就像英语具有“日常英语”和“商务英语”等不同的语句库,python也有具有不同功能的工具库。比如python的pandas库就能够轻易地,对千万级表的数据做到,将第10行到第20万行的所有1都替换成0;python的numpy库又能轻易地进行N维空间的矩阵运算。另外python的matplotlib和seaborn可以短时高效地绘制跟excel和BI一样精美的指标图。
第三个层次:当数据分析师处理超大数据量的时候,hadoop和spark等等大数据工具及组件就会派上用场。这时学习的就是从多台服务器上调取大量数据,并且要将这大量数据做出高效运算,和用算法进行分析。
先打地基,后建高楼。万楼皆从平地起。Excel,MySQL,BI就是处理小数据的地基。Python可处理中量级。Hadoop和spark等工具则是处理大数据的利器。
沿着这个思路往下,结合刻意联系的原则(量化的特定目标+实践+及时反馈),你一定会收获入门数据分析师的果实。
大数据分析师可以零基础学起吗?
1. 入门基础:建立坚实的知识体系。学习统计学、数学、计算机科学等相关领域的基础知识。统计学和数学为数据分析提供了理论基础和思维方法,而计算机科学则有助于掌握数据处理和分析的工具和技术。2. 实践技能:积累项目经验。通过实际项目来锻炼技能,例如寻找开源数据集或参与实际项目,进行数据清洗、分析、...
零基础如何成为数据分析师?
1.统计学相关知识 统计学是数据分析的基础,因为数据分析需要对大量数据进行统计分析,大家可以通过对统计学的学习,培养数据分析最基本的一些逻辑思维。2. EXCEL 不要小看EXCEL,它可是最初级的数据分析工具,在处理的数据量不是很大时,EXCEL完全可以胜任。而且大家都有一定基础,平时工作中也经常用,学习...
数据分析如何自学
先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。2、目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公...
零基础如何系统学习数据分析?
4.了解业界动态,善于探索和发现 你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。以上就是小编今天给大家整理发布的关于“零基础如何系统学习数据分析?”的相关内...
零基础学数据分析哪些技能要及时掌握?
2、分析工具/编程言语 Excel是运用最广,也是最简单入门的数据剖析东西之一,函数、数据透视表和公式必须熟练把握。另外,还要学会一个专业统计剖析东西,SPSS作为入门学习是比较好的。不过随着数据的增长,编程言语的学习将会使数据处理变得更加高效。3、事务/职业/商业常识 脱离事务的纯数据剖析是没有任何...
如何入行数据分析师
零基础学数据分析师一定要从Excel入门,因为Excel是处理小型数据量企业用的最多的工具,在基础数据分析师与数据运营岗位中具有极其重要的地位。作为数据分析师的核心工具,具体学习内容有Excel函数技巧(查找函数、统计函数、逻辑函数)、Excel快速处理技巧(格式调整、查找定位、快捷键技巧等)和Excel可视化技巧(组合图、条形图...
零基础学数据分析应该怎么入门
第二阶段:SQL数据库语言 作为数据分析人员,首先要知道如何去获取数据,其中最常见的就是从关系型数据库中取数,因此可以不会R,不会python,但是不能不会SQL。DT时代,数据正在呈指数级增长。Excel对十万条以内的数据处理起来没有问题,但是往小处说,但凡产品有一点规模,数据都是百万起。这时候就...
新手怎么学习数据分析
通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。
数据分析师需要学习哪里内容?
2、分析工具 对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。对于数据挖掘...
数据分析师需要具备的能力
分析工具/编程语言 Excel是运用最广,也是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。另外,还要学会一个专业统计分析工具,SPSS作为入门学习是比较好的。不过随着数据的增长,编程语言的学习将会使数据处理变得更加高效。对于编程的学习,首先要学习SQL,掌握基本的增、删、改、查,...