问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

大数据方面核心技术有哪些?

发布网友 发布时间:2022-04-23 09:40

我来回答

7个回答

热心网友 时间:2022-04-03 09:29

简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:

    大数据采集

    大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。

    数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。

    网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。

    文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。

    大数据预处理

    大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

    数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。

    数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。

    数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。

    数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。

    大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:

    1、基于MPP架构的新型数据库集群

    采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。

    较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。

    2、基于Hadoop的技术扩展和封装

    基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。

    伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。

    3、大数据一体机

    这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。

    四、大数据分析挖掘

    从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。

    1、可视化分析

    可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。

    具有简单明了、清晰直观、易于接受的特点。

    2、数据挖掘算法

    数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。

    数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。

    3、预测性分析

    预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。

    帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。

    4、语义引擎

    语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。

    5、数据质量管理

    指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。

    以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:

    文件存储:Hadoop HDFS、Tachyon、KFS

    离线计算:Hadoop MapRece、Spark

    流式、实时计算:Storm、Spark Streaming、S4、Heron

    K-V、NOSQL数据库:HBase、Redis、MongoDB

    资源管理:YARN、Mesos

    日志收集:Flume、Scribe、Logstash、Kibana

    消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

    查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

    分布式协调服务:Zookeeper

    集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

    数据挖掘、机器学习:Mahout、Spark MLLib

    数据同步:Sqoop

    任务调度:Oozie

热心网友 时间:2022-04-03 10:47

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

热心网友 时间:2022-04-03 12:21

中国人工智能发展迅猛,*对人工智能也是很重视的。人工智能的专业方向有科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化、通信、机械制造,人工智能的前景虽然很好,但是它的难度系数很高,目前人工智能的人才需求量很大,相比于其他技术岗位,竞争度降低,薪资相对来说是较高的,因此,现在是进入人工智能领域的大好时机。人工智能的发展前景还是很不错的,原因有几点,智能化是未来的重要趋势之一、产业互联网的发展必然带动人工智能的发展、人工智能技术将成为职场人的必备技能之一。

目前,人工智能在计算机领域得到了广泛的重视,我相信在未来的应用前景也会更加广泛。

热心网友 时间:2022-04-03 14:13

总的来说大数据有5个部分。数据采集,数据存储,数据清洗,数据挖掘,数据可视化。还有新兴的实时流处理,可能还有别的

热心网友 时间:2022-04-03 16:21

    大数据采集

    大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。

    数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。

    网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。

    文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。

    大数据预处理

    大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

    数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。

    数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。

    数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。

    数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。

    大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:

    1、基于MPP架构的新型数据库集群

    采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。

    较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。

    2、基于Hadoop的技术扩展和封装

    基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。

    伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。

    3、大数据一体机

    这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。

    四、大数据分析挖掘

    从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。

    1、可视化分析

    可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。

    具有简单明了、清晰直观、易于接受的特点。

    2、数据挖掘算法

    数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。

    数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。

    3、预测性分析

    预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。

    帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。

    4、语义引擎

    语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。

    5、数据质量管理

    指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。

    以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:

    文件存储:Hadoop HDFS、Tachyon、KFS

    离线计算:Hadoop MapRece、Spark

    流式、实时计算:Storm、Spark Streaming、S4、Heron

    K-V、NOSQL数据库:HBase、Redis、MongoDB

    资源管理:YARN、Mesos

    日志收集:Flume、Scribe、Logstash、Kibana

    消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

    查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

    分布式协调服务:Zookeeper

    集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

    数据挖掘、机器学习:Mahout、Spark MLLib

    数据同步:Sqoop

    任务调度:Oozie

热心网友 时间:2022-04-03 18:45

简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:

    大数据采集

    大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。

    数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。

    网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。

    文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。

    大数据预处理

    大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

    数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。

    数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。

    数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。

    数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。

    三、大数据存储

    大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:

    1、基于MPP架构的新型数据库集群

    采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。

    较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。

    2、基于Hadoop的技术扩展和封装

    基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。

    伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。

    3、大数据一体机

    这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。

    四、大数据分析挖掘

    从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。

    1、可视化分析

    可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。

    具有简单明了、清晰直观、易于接受的特点。

    2、数据挖掘算法

    数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。

    数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。

    3、预测性分析

    预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。

    帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。

    4、语义引擎

    语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。

    5、数据质量管理

    指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。

热心网友 时间:2022-04-03 21:27

人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数据。澳鹏提供的数据采集服务,提升规模化机器学习。作为训练数据服务的行业领先者,我们能够快速交付涵盖多种数据类型大量优质数据,包括图像、视频、语音、音频和文本,以满足客户特定 AI 项目的需求
大数据的核心技术是___。

大数据的核心技术是大数据存储与管理技术。拓展知识:具体来说,大数据存储与管理技术主要包括了大数据采集、大数据预处理、大数据存储与管理、数据挖掘等方面。为了高效地处理和分析大数据,这些技术都需要采用一系列的软硬件工具和平台,以实现数据的实时传输、存储、处理和分析。首先,大数据采集是指从各种来源...

数据中台产品应具备哪些功能和特点?

数据中台主要包含以下功能:1)数据模型管理:可以将数据仓库划分为贴源层、治理层、应用层和共享层,并在每个层设计概念模型、逻辑模型和物理模型。2)数据集成管理:能接入各类数据源,支持拖拉拽式操作和可视化测试,数据性能支持每分钟300万...

大数据的核心技术是___。

大数据的核心技术涵盖了数据采集、预处理、存储管理和数据挖掘等多个方面。首先,数据采集涉及从各种数据源,如社交媒体、日志文件和传感器等,自动获取和整理数据。其次,数据预处理包括清理、转换和整合数据,以消除噪声、不一致性,并确保数据适用于后续分析。接着,大数据存储管理技术需要使用分布式存储系统...

大数据的核心技术是什么?怎么学大数据比较合理?

大数据的核心技术涵盖了数据采集、预处理、存储、管理和分析等多个方面。在大数据领域,主要工作环节包括:1. 大数据采集:涉及智能传感层,包括数据传感系统、网络通信系统、传感适配系统、智能识别系统和软硬件资源访问系统等,实现了结构化、半结构化和非结构化海量数据的智能识别、定位、跟踪、接入、传输、...

大数据处理技术有哪些

大数据处理技术有以下内容:一、数据挖掘技术 数据挖掘技术是大数据处理的核心技术之一。通过对海量数据的分析,挖掘出有价值的信息,为决策提供科学依据。数据挖掘技术包括分类、聚类、关联规则挖掘等。二、云计算技术 云计算技术在大数据处理中发挥着重要作用。云计算通过网络将大量的数据资源进行管理和处理,...

大数据的核心技术有哪些

大数据技术的核心包括以下几个方面:1. 数据采集与预处理:- 技术如FlumeNG被用于实时日志收集,支持自定义数据发送方,以便有效收集数据。- Zookeeper提供分布式应用程序协调服务,确保数据同步。2. 数据存储:- Hadoop框架,旨在支持离线和大规模数据处理分析,其HDFS存储引擎已成为数据存储的重要选择。- H...

大数据的核心技术是什么

大数据技术的核心体系涉及多个方面,包括数据采集与预处理、分布式存储、数据库管理、数据仓库、机器学习、并行计算以及数据可视化等。1. 数据采集与预处理:FlumeNG是一种实时日志收集系统,能够支持定制多种数据发送方式,以便有效收集数据。Zookeeper则提供了一个分布式的协调服务,确保数据同步。2. 数据存储...

大数据核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步...

大数据的关键技术有哪些

数据分析与挖掘技术是从大数据中提取有价值信息的核心技术,它包括数据挖掘、统计分析、机器学习等方法。6. 数据可视化技术 数据可视化技术是将数据分析结果以图形或图像形式展示出来,帮助用户更直观地理解数据和洞察信息。大数据的应用范围广泛,覆盖了制造业、金融业、汽车行业、互联网行业、电信行业等多个...

大数据专业需要学习哪些技术

1、大数据工程师要学习JAVA、Scala、Python等编程语言,不过这些语言都是相通的,掌握了一门编程语言其他的就很好学习了。大数据的学习需要掌握以下技术:Hadoop、spark、storm等核心技术。2、基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术...

大数据专业有什么课程?

“大数据”简单来说,就是一些把需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出一些结论。学的主要内容有:①JavaSE核心技术 ②Hadoop平台核心技术、Hive开发、HBase开发 ③Spark相关技术、Scala基本编程 ④掌握Python基本使用、核心库的使用、Python爬虫、简单数据...

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
万年青的作用有哪些?万年青功效作用大全! 高压锅煮粥煮湖了怎么办? 广东万年青的功效和作用(万年青是什么菜) 万年青的作用有哪些?万年青的作用与功效 植物万年青的功效与作用 煲粥时很容易糊锅,怎么办 倒走有哪些好处和坏处 倒走的好处和坏处 倒走对身体有什么好处 倒退走路对身体有什么好处 ...魂魄回来报仇 有个师傅带我降服她。 是什么意思? 网络连接上了但是打不开网页,能上qq是怎么回事? 大数据的核心技术是什么?怎么学大数据比较合理? 浏览器打不开网页,但能上QQ是怎么回事? 暴雨预警信号从低到高分别是什么颜色 哪些地方发布了暴雨蓝色预警? 暴雨蓝色预警,有哪些防御指南? 暴雨蓝色预警与黄色预警是什么意思 注意!2021年首个暴雨蓝色预警来了,游客们该注意什么? 南京市发布暴雨蓝色预警,该做好哪些应对举措? 暴雨分几个级别? 暴雨预警都有哪些等级,哪些颜色预警? 什么是暴雨蓝色警报 中央气象台继续发布暴雨蓝色预警,具体会涉及到哪些地区? 2021年首个暴雨蓝色预警来了,哪些地区将需接受暴雨的侵袭? 暴雨黄色、橙色、红色预警都表示什么? 暴雨蓝色预警是什么等级? 蓝色暴雨预警信号是什么意思呢? 暴雨预警级别的颜色分别代表什么? 暴雨蓝色预警标准是什么? 暴雨蓝色预警是什么级别 大数据的数据科学与关键技术是什么? 大数据中Hadoop的核心技术是什么? 空调可以制冷,却不能制热,也啥原因 浏览器为什么打不开网页.但是QQ却可以上呢 大数据技术有哪些? 打不开网页能上qq 是什么原因 大数据的核心技术是什么?是数据挖掘吗? IE浏览器打不开网页,但是可以上QQ,这是怎么回事? hadoop大数据处理架构的核心技术是什么? 大数据有什么技术,大数据技术内容介绍 浏览器打不开,qq能上,是啥原因? 哪些技术属于大数据的关键技术海量数据的存储技术 大数据的核心技术有哪些? 广东省妇女联合会的介绍 数据科学和大数据技术专业是文科还是理科 空调只能制冷,不制热了怎么回事? 广东省妇女联合会的领导信息 电脑浏览器打不开,能上QQ,怎么办? 空调可以制冷但不制热的原因及解决办法 我的浏览器打不开网页,但是能上QQ。浏览器卸载了从新装了还是不行。求高手指点是怎么回事及解决办法
  • 焦点

最新推荐

猜你喜欢

热门推荐