问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

在Linux 上,编写一个每秒接收 100万UDP数据包的程序究竟有多难

发布网友 发布时间:2022-04-22 19:49

我来回答

1个回答

热心网友 时间:2023-10-26 20:35

首先,我们假设:
测量每秒的数据包(pps)比测量每秒字节数(Bps)更有意思。您可以通过更好的管道输送以及发送更长数据包来获取更高的Bps。而相比之下,提高pps要困难得多。
因为我们对pps感兴趣,我们的实验将使用较短的 UDP 消息。准确来说是 32 字节的 UDP 负载,这相当于以太网层的 74 字节。
在实验中,我们将使用两个物理服务器:“接收器”和“发送器”。
它们都有两个六核2 GHz的 Xeon处理器。每个服务器都启用了 24 个处理器的超线程(HT),有 Solarflare 的 10G 多队列网卡,有 11 个接收队列配置。稍后将详细介绍。
测试程序的源代码分别是:udpsender、udpreceiver。
预备知识
我们使用4321作为UDP数据包的端口,在开始之前,我们必须确保传输不会被iptables干扰:

Shell

receiver$ iptables -I INPUT 1 -p udp --dport 4321 -j ACCEPT

receiver$ iptables -t raw -I PREROUTING 1 -p udp --dport 4321 -j NOTRACK

为了后面测试方便,我们显式地定义IP地址:

Shell

receiver$ for i in `seq 1 20`; do

ip addr add 192.168.254.$i/24 dev eth2;

done

sender$ ip addr add 192.168.254.30/24 dev eth3

1. 简单的方法
开始我们做一些最简单的试验。通过简单地发送和接收,有多少包将会被传送?
模拟发送者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

fd.bind(("0.0.0.0", 65400)) # select source port to rece nondeterminism

fd.connect(("192.168.254.1", 4321))

while True:

fd.sendmmsg(["x00" * 32] * 1024)

因为我们使用了常见的系统调用的send,所以效率不会很高。上下文切换到内核代价很高所以最好避免它。幸运地是,最近Linux加入了一个方便的系统调用叫sendmmsg。它允许我们在一次调用时,发送很多的数据包。那我们就一次发1024个数据包。
模拟接受者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
fd.bind(("0.0.0.0", 4321))
while True:
packets = [None] * 1024
fd.recvmmsg(packets, MSG_WAITFORONE)

同样地,recvmmsg 也是相对于常见的 recv 更有效的一版系统调用。
让我们试试吧:

Shell

sender$ ./udpsender 192.168.254.1:4321
receiver$ ./udpreceiver1 0.0.0.0:4321
0.352M pps 10.730MiB / 90.010Mb
0.284M pps 8.655MiB / 72.603Mb
0.262M pps 7.991MiB / 67.033Mb
0.199M pps 6.081MiB / 51.013Mb
0.195M pps 5.956MiB / 49.966Mb
0.199M pps 6.060MiB / 50.836Mb
0.200M pps 6.097MiB / 51.147Mb
0.197M pps 6.021MiB / 50.509Mb

测试发现,运用最简单的方式可以实现 197k – 350k pps。看起来还不错嘛,但不幸的是,很不稳定啊,这是因为内核在核之间交换我们的程序,那我们把进程附在 CPU 上将会有所帮助

Shell

sender$ taskset -c 1 ./udpsender 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.362M pps 11.058MiB / 92.760Mb
0.374M pps 11.411MiB / 95.723Mb
0.369M pps 11.252MiB / 94.389Mb
0.370M pps 11.289MiB / 94.696Mb
0.365M pps 11.152MiB / 93.552Mb
0.360M pps 10.971MiB / 92.033Mb

现在内核调度器将进程运行在特定的CPU上,这提高了处理器缓存,使数据更加一致,这就是我们想要的啊!
2. 发送更多的数据包
虽然 370k pps 对于简单的程序来说已经很不错了,但是离我们 1Mpps 的目标还有些距离。为了接收更多,首先我们必须发送更多的包。那我们用独立的两个线程发送,如何呢:

Shell

sender$ taskset -c 1,2 ./udpsender
192.168.254.1:4321 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.349M pps 10.651MiB / 89.343Mb
0.354M pps 10.815MiB / 90.724Mb
0.354M pps 10.806MiB / 90.646Mb
0.354M pps 10.811MiB / 90.690Mb

接收一端的数据没有增加,ethtool –S 命令将显示数据包实际上都去哪儿了:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx_nodesc_drop_cnt: 451.3k/s
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 0.5/s
rx-4.rx_packets: 355.2k/s
rx-5.rx_packets: 0.0/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

通过这些统计,NIC 显示 4 号 RX 队列已经成功地传输大约 350Kpps。rx_nodesc_drop_cnt 是 Solarflare 特有的计数器,表明NIC发送到内核未能实现发送 450kpps。
有时候,这些数据包没有被发送的原因不是很清晰,然而在我们这种情境下却很清楚:4号RX队列发送数据包到4号CPU,然而4号CPU已经忙不过来了,因为它最忙也只能读350kpps。在htop中显示为:

多队列 NIC 速成课程
从历史上看,网卡拥有单个RX队列,用于硬件和内核之间传递数据包。这样的设计有一个明显的*,就是不可能比单个CPU处理更多的数据包。
为了利用多核系统,NIC开始支持多个RX队列。这种设计很简单:每个RX队列被附到分开的CPU上,因此,把包送到所有的RX队列网卡可以利用所有的CPU。但是又产生了另一个问题:对于一个数据包,NIC怎么决定把它发送到哪一个RX队列?

用 Round-robin 的方式来平衡是不能接受的,因为这有可能导致单个连接中数据包的重排序。另一种方法是使用数据包的hash值来决定RX号码。Hash值通常由一个元组(源IP,目标IP,源port,目标port)计算而来。这确保了从一个流产生的包将最终在完全相同的RX队列,并且不可能在一个流中重排包。
在我们的例子中,hash值可能是这样的:

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1', 65400, 4321) % number_of_queues

多队列 hash 算法
Hash算法通过ethtool配置,设置如下:

Shell

receiver$ ethtool -n eth2 rx-flow-hash udp4
UDP over IPV4 flows use these fields for computing Hash flow key:
IP SA
IP DA

对于IPv4 UDP数据包,NIC将hash(源 IP,目标 IP)地址。即

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1') % number_of_queues

这是相当有限的,因为它忽略了端口号。很多NIC允许自定义hash。再一次,使用ethtool我们可以选择元组(源 IP、目标 IP、源port、目标port)生成hash值。

Shell

receiver$ ethtool -N eth2 rx-flow-hash udp4 sdfn
Cannot change RX network flow hashing options: Operation not supported

不幸地是,我们的NIC不支持自定义,我们只能选用(源 IP、目的 IP) 生成hash。
NUMA性能报告
到目前为止,我们所有的数据包都流向一个RX队列,并且一个CPU。我们可以借这个机会为基准来衡量不同CPU的性能。在我们设置为接收方的主机上有两个单独的处理器,每一个都是一个不同的NUMA节点。
在我们设置中,可以将单线程接收者依附到四个CPU中的一个,四个选项如下:
另一个CPU上运行接收器,但将相同的NUMA节点作为RX队列。性能如上面我们看到的,大约是360 kpps。
将运行接收器的同一 CPU 作为RX队列,我们可以得到大约430 kpps。但这样也会有很高的不稳定性,如果NIC被数据包所淹没,性能将下降到零。
当接收器运行在HT对应的处理RX队列的CPU之上,性能是通常的一半,大约在200kpps左右。
接收器在一个不同的NUMA节点而不是RX队列的CPU上,性能大约是330 kpps。但是数字会不太一致。
虽然运行在一个不同的NUMA节点上有10%的代价,听起来可能不算太坏,但随着规模的变大,问题只会变得更糟。在一些测试中,每个核只能发出250 kpps,在所有跨NUMA测试中,这种不稳定是很糟糕。跨NUMA节点的性能损失,在更高的吞吐量上更明显。在一次测试时,发现在一个坏掉的NUMA节点上运行接收器,性能下降有4倍。
3.多接收IP
因为我们NIC上hash算法的*,通过RX队列分配数据包的唯一方法是利用多个IP地址。下面是如何将数据包发到不同的目的IP:

1

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321

ethtool 证实了数据包流向了不同的 RX 队列:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 355.2k/s
rx-4.rx_packets: 0.5/s
rx-5.rx_packets: 297.0k/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

接收部分:

Shell

receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.609M pps 18.599MiB / 156.019Mb
0.657M pps 20.039MiB / 168.102Mb
0.649M pps 19.803MiB / 166.120Mb

万岁!有两个核忙于处理RX队列,第三运行应用程序时,可以达到大约650 kpps !
我们可以通过发送数据到三或四个RX队列来增加这个数值,但是很快这个应用就会有另一个瓶颈。这一次rx_nodesc_drop_cnt没有增加,但是netstat接收到了如下错误:

Shell

receiver$ watch 'netstat -s --udp'
Udp:
437.0k/s packets received
0.0/s packets to unknown port received.
386.9k/s packet receive errors
0.0/s packets sent
RcvbufErrors: 123.8k/s
SndbufErrors: 0
InCsumErrors: 0

这意味着虽然NIC能够将数据包发送到内核,但是内核不能将数据包发给应用程序。在我们的case中,只能提供440 kpps,其余的390 kpps + 123 kpps的下降是由于应用程序接收它们不够快。
4.多线程接收
我们需要扩展接收者应用程序。最简单的方式是利用多线程接收,但是不管用:

Shell

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321
receiver$ taskset -c 1,2 ./udpreceiver1 0.0.0.0:4321 2
0.495M pps 15.108MiB / 126.733Mb
0.480M pps 14.636MiB / 122.775Mb
0.461M pps 14.071MiB / 118.038Mb
0.486M pps 14.820MiB / 124.322Mb

接收性能较于单个线程下降了,这是由UDP接收缓冲区那边的锁竞争导致的。由于两个线程使用相同的套接字描述符,它们花费过多的时间在UDP接收缓冲区的锁竞争。这篇论文详细描述了这一问题。
看来使用多线程从一个描述符接收,并不是最优方案。
5. SO_REUSEPORT
幸运地是,最近有一个解决方案添加到 Linux 了 —— SO_REUSEPORT 标志位(flag)。当这个标志位设置在一个套接字描述符上时,Linux将允许许多进程绑定到相同的端口,事实上,任何数量的进程将允许绑定上去,负载也会均衡分布。
有了SO_REUSEPORT,每一个进程都有一个独立的socket描述符。因此每一个都会拥有一个专用的UDP接收缓冲区。这样就避免了以前遇到的竞争问题:

Shell

1
2
3
4

receiver$ taskset -c 1,2,3,4 ./udpreceiver1 0.0.0.0:4321 4 1
1.114M pps 34.007MiB / 285.271Mb
1.147M pps 34.990MiB / 293.518Mb
1.126M pps 34.374MiB / 288.354Mb

现在更加喜欢了,吞吐量很不错嘛!
更多的调查显示还有进一步改进的空间。即使我们开始4个接收线程,负载也会不均匀地分布:

两个进程接收了所有的工作,而另外两个根本没有数据包。这是因为hash冲突,但是这次是在SO_REUSEPORT层。
结束语
我做了一些进一步的测试,完全一致的RX队列,接收线程在单个NUMA节点可以达到1.4Mpps。在不同的NUMA节点上运行接收者会导致这个数字做多下降到1Mpps。
总之,如果你想要一个完美的性能,你需要做下面这些:
确保流量均匀分布在许多RX队列和SO_REUSEPORT进程上。在实践中,只要有大量的连接(或流动),负载通常是分布式的。
需要有足够的CPU容量去从内核上获取数据包。
To make the things harder, both RX queues and receiver processes should be on a single NUMA node.
为了使事情更加稳定,RX队列和接收进程都应该在单个NUMA节点上。
虽然我们已经表明,在一台Linux机器上接收1Mpps在技术上是可行的,但是应用程序将不会对收到的数据包做任何实际处理——甚至连看都不看内容的流量。别太指望这样的性能,因为对于任何实际应用并没有太大用处。
在Linux上,编写一个每秒接收100万UDP数据包的程序究竟有多难

假设你要接受的UDP包都是最大MTU,不大于1500字节一个包,100万个UDP包也就是1.5GBps的流量,这个并不困难,当然首先网口要有足够的带宽。我以前开发的流媒体转发服务,在生产环境下,一台设备上游UDP包可以接收2.7GBps,并同时转发出去。当然这个和程序运行的设备配置是有关系的,主要是网卡和CPU 给...

在Linux 上,编写一个每秒接收 100万UDP数据包的程序究竟有多难

测量每秒的数据包(pps)比测量每秒字节数(Bps)更有意思。您可以通过更好的管道输送以及发送更长数据包来获取更高的Bps。而相比之下,提高pps要困难得多。因为我们对pps感兴趣,我们的实验将使用较短的 UDP 消息。准确来说是 32 字节的 UDP 负载,这相当于以太网层的 74 字节。在实验中,我们将使用...

使用recvfrom接收UDP包在Windows和Linux平台的不同表现

每个核 5万的速率可能是极限了,但 Linux的网络栈究竟可能达到多少呢?我们换一种更有趣的方式来问: 在 Linux上,编写一个每秒接收 100万 UDP数据包的程序究竟有多

Linux网络 - 数据包在内核中接收和发送的过程(转)

由于是UDP包,所以第一步会进入IP层,然后一级一级的函数往下调:应用层一般有两种方式接收数据,一种是recvfrom函数阻塞在那里等着数据来,这种情况下当socket收到通知后,recvfrom就会被唤醒,然后读取接收队列的数据;另一种是通过epoll或者select监听相应的socket,当收到通知后,再调用recvfrom函数去...

分析LinuxUDP源码实现原理linuxudp源码

本文将重点介绍Linux UDP(用户数据报协议)的源码实现原理。UDP是面向无连接的协议。 它为应用程序在IP网络之间提供端到端的通信,而不需要维护连接状态。从源码来看,Linux UDP实现分为两个主要部分,分别为系统调用和套接字框架。 系统调用主要处理一些针对特定功能层的系统调用,例如socket、bind、listen...

在linux下如何每隔30s发送一个使用udp协议的包?

每隔30秒可以通过crontab实现 发送udp你可以自己用命令实现或者写程序实现 设置crontab每隔30秒调用这个命令,就可以达到你说的要求了 自己网上看crontab的资料吧,配置文件在/etc/crontab

linux查看本地一个udp端口有没有接收到数据包

使用如下命令: tcpdump udp port 200

我在linux环境下编写udp客户端程序。为什么使用sendto发送数据时,接收...

1、检查客户端和服务端的端口号是否一致;2、接收端的socket要采用block模式,数据收到后打印出来.

linux 应用层用udp发送数据时有大小限制吗?

从理论上来说,UDP数据的总长度为 65535(IP最大长度)-20(IP头)-8(UDP头) = 65507个字节,但大多数系统都达不到这个长度。这一般是受到两个方面的因素限制:1) 应用程序编程接口限制。一般socket的缓冲区大小是8K,但都提供API来设置缓冲区的大小(SetSockOpt)。一般发送UDP最好不要超过512...

Linux中以sar命令监控系统的使用教程

rxfram/s:每秒接收数据包的帧对齐错误数rxfifo/s:接收的数据包每秒FIFO过速的错误数txfifo/s:发送的数据包每秒FIFO过速的错误数使用SOCK关键字,则会针对socket连接进行汇报:代码如下:#sar -n SOCK 2 10Linux 2.6.18-53.el5PAE (localhost.localdomain) 03/29/200901:44:32 AM totsck tcpsck udpsck raws...

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
熟的白木耳能隔夜吃吗 屋后种什么乔木树最旺 居民的人均可支配收入 什么是居民可支配收入 ...每天还是很想他,有时候一想他就掉眼泪,怎么办呢? 我的狗狗永远离开我了,我该怎么办? 朋友很喜欢狗,但她的狗狗很老了,已经过世了,我该怎么安慰他? 谢谢了... 新奥迪a6机油怎么检查 宠物老死了你会救治吗? 奥迪的机油尺怎么看 现在国内使用最多的linux是什么版本的? 为什么头顶上有很多碎发刘海也是 剪刘海时很多碎发粘在脸上,怎么清理? NUMA结构的系统,kernel在那个节点? 空气刘海剪厚了 打薄以后都是碎头发 怎么弄 如何关闭 linux numa 刘海周围碎发怎么办 Linux上MySQL优化提升性能 哪些可以优化的关闭NUMA特性 前面刘海有许多碎发怎么办??? linux numa是什么东西 新长的碎发太多,怎么办? Linux上MySQL优化提升性能,哪些可以优化关闭NUMA特性? 头上碎发太多,发型太乱怎么办? 如何判断一个多核机器(Linux)是否为NUMA结构 新长的碎发太多怎么办? 碎刘海怎么扎法 刘海碎发太多怎么扎 为什么会有很多碎发刘海? 打理发型时,额头发缝很多小碎发怎么处理才比较好看呢? 刘海碎头发多怎么处理才能显脸小? 碎发太多了应该怎么办? linux 怎么安装mysql 5.7.18 oracle 10g要不要关闭numa 请问CPU的频率的大小主要影响什么 “钻石级别VS/H”是什么意思? 钻石的颜色?H色vvs是什么级别啊? RTD模块是什么意思 钻石戒指颜色H是什么样子的? RTD模块,什么是RTD模块 买了个钻戒,上面写的颜色级别是H,净度级别是VS,请问这是属于什么级别的钻,是不是好钻,还是一般的钻。 GPS测量中RTD模式是什么意思 它与RTK模式有什么区别? dcs中的RTD模块接线及动作原理 NTC和RTD有什么分别,是什么样的一个概念? 钻戒里面H,G,I都是什么意思? RTD销售是什么 钻石颜色H,净度VVS好不好,钻石中0.184克拉要多少钱? 电机试验中的RTD和BTD是什么? 钻石的级别是H好还是G-F好? .RTD是什么格式啊?用什么可以识别啊? 请测量的高手具体阐述一下RTD和RTK的联系和区别?另外单频和双频有什么联系和不同? 西门子PLC测量热电阻为啥要用RTD模块,,,不能用普通的AI模块吗,,为什么呀
  • 焦点

最新推荐

猜你喜欢

热门推荐