发布网友 发布时间:2022-09-20 11:53
共2个回答
热心网友 时间:2023-11-04 23:11
求证:当x趋近于x0时,函数f(x)的极限等于A 。
证明:
只要证明:对任意小的e>0,存在d>0,当|x-x0|<d时,有|f(x)-A|<e,则证毕!
这里关键是使|f(x)-A|进行适当放大,得到 |f(x)-A|< g(|x-x0|) 然后,令g(|x-x0|)<e,从中解出 |x-x0|<v(e),然后取d=v(e)即可 。
例子:
|f(x)-A|<6|x-x0| < e |x-x0|<e/6
取d=e/6 对任意小的e>0,存在d=e/6>0
当|x-x0|<d时,有|f(x)-A|<6|x-x0| <(6*e/6)=e
名词解释:
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
热心网友 时间:2023-11-04 23:12
求证:当x趋近于x0时,函数f(x)的极限等于A 。