问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

正确选择相关性分析的统计方法

发布网友 发布时间:2022-09-18 05:08

我来回答

1个回答

热心网友 时间:2023-10-20 11:30

转自: https://www.medsci.cn/article/show_article.do?id=55c91839569a

相关性分析主要用于:(1)判断两个或多个变量之间的统计学关联;(2)如果存在关联,进一步分析关联强度和方向。

那么,什么样的研究可以进行相关性分析呢?我们在这里列举了几个相关性研究的例子供大家参考:

确定要进行相关性分析后,对两个变量或多个变量进行相关性分析所采取的统计方法是不同的。那么,怎么判断研究变量的数量呢?

我们分别就两个变量的研究和三个及以上变量的研究进行了举例,帮助大家理解。同时,我们也对例子中变量数据类型进行了描述(如,连续变量、二分类变量、无序分类变量和有序分类变量)。

确定拟分析变量之间的相关性后,我们需要判断变量的数据类型。

变量的数据类型主要分为连续变量、二分类变量、无序分类变量和有序分类变量4类。拟分析的变量可以同属于一个数据类型,也可以分属不同的数据类型。根据这两个变量数据类型的不同,应采用的统计分析方法也不同。

连续变量是指对连续的指标测量所得到的数值,比如体重。其特点是等距区间的差异相同,例如体重在50kg-60kg之间的差异与60kg-70kg之间的差异相同。连续变量的示例如下:

有序分类变量可以有两个或者多个已排序的类别。举例来说,如果某患者的治疗结果是“痊愈”、“好转”、“不变”或者“恶化”。这就是一个有序分类变量,因为可以对四个类别进行排序。

需要注意的是,虽然我们可以对有序分类变量的类别排序,但还需要判断这种类别排序是不是等距的。例如,用各年龄段的近似中位数代表年龄类别,即24(18-30)岁、40(31-50)岁、60(51-70)岁、80(70岁以上)岁,可以将年龄视为定距变量。

但将患者的诊疗结果“痊愈”、“好转”、“无变化”或者“恶化”就不能认为是等距的,换句话说,不能认为“好转”是“无变化”的2倍;也不能认为“痊愈”和“好转”的差异与“不变”和“恶化很满意”的差异一样,即有序分类变量各类别之间不是可能是定距、也可能不是定距的,这是与连续变量的根本不同。有序分类变量的示例如下:

患者对医疗效果的满意程度,用5类测量:1-非常不满意、2-不满意、3-一般、4-满意、5-非常满意

对疾病的疗效:用4类测量:1-痊愈、2-好转、3-不变、4-变差

BMI指数是一种用于评估体重水平的指标。一般来说,BMI是连续变量(例如BMI为23.7或BMI为34.1),但按以下方式分类时可以视为有序分类变量:体重过轻(BMI小于18.5)、健康/正常体重(BMI在18.5—23.9之间)、超重(BMI在24—27.9之间)和肥胖(BMI大于28)。

二分类变量是只有两个类别的分类变量。二分类变量的类别之间没有顺序,不能像有序分类变量的类别那样进行排序。比如,性别变量就是一个二分类变量,可以分为“男性”和“女性”两个分类。再如,罹患心脏病也是一个二分类变量,分为“是”和“否”两个分类。

二分类变量类别是互斥的,一个研究对象不能同时分属于两个类别,比如一个人不能同时是男性或者女性,也不能同时患有心脏病又没有心脏病。二分类变量的示例如下:

性别,两个类别:男性或女性

罹患心脏病,两个类别:是或否

研究分组,两个类别:实验组或对照组

无序分类变量是具有三个及以上类别的分类变量。无序分类变量的类别之间没有内在顺序,也不能像有序分类变量类别那样进行排序。比如,出行方式是一个典型的无序分类变量,可以分为自行车、自驾、出租车、地铁或公交5个类别。无序分类变量的类别也是互斥的,一个研究对象不能同时分属于不同的类别,比如一次出行不能同时坐地铁又自己开车。无序分类变量的示例如下:

手机品牌,四个类别:苹果、三星、华为或其他

头发的颜色,五个类别:棕色、黑色、金色、红色或者灰色

民族,七个类别:汉族、回族、蒙古族、满族、维吾尔族、朝鲜族或其他

自变量也称为预测变量或解释变量,因变量也称为应答变量或结局变量。两者的区分在于,自变量可以影响因变量,因变量的值取决于对应自变量的值。也可以用因果关系来区分自变量和因变量,即自变量的变化导致了因变量的变化(但自变量和因变量之间并不一定真的存在因果关系)。自变量是对因变量的描述,而因变量可以被自变量所解释。

研究设计也可以帮助我们区分自变量和因变量。举例来说,我们计划开展一项研究分析不同剂量药物的治疗效果,治疗药物就是这个研究的自变量,治疗效果则是因变量。

比如我们想知道抗感染药物剂量(1.5 mg / d、4 mg /d或者 8 mg/d)与患者发热时长的关系,抗感染药物剂量就是自变量,因为这个剂量的是由研究者干预产生的,且很可能是发热时长差异的原因;而同时发热时长就是这项研究的因变量。

横断面调查并不区分自变量和因变量。举例来说,研究者根据问卷调查研究对象的工作效率(1-5类:1代表非常高效、5代表非常低效)和锻炼情况(1-4类:1代表经常锻炼、4代表不锻炼)的关系。

在该研究中,受调查者的工作效率和锻炼情况并不存在明确的因果关系,因为效率高可能意味着受调查者有更多的锻炼时间,而反之经常锻炼可能也会提高工作效率。因此,我们就不区分该研究的自变量和因变量。

本文先说说研究中涉及两个变量的情况。

Pearson相关用于评估两个连续变量之间的线性关联强度。这种统计方法本身不区分自变量和因变量,但如果您根据研究背景已经对变量进行了区分,我们仍可以采用该方法判断相关性。

Pearson相关不区分自变量和因变量。虽然这不影响我们采用Pearson相关分析两个连续变量的相关性,但如果还是想通过统计方法区分一下,可以采用线性回归。

这里还需要判断有序分类变量是否为定距变量。如果认为拟分析的有序分类变量是定距变量,我们就可以为变量中的类别赋值,然后根据这些数值进行分析(即看作连续变量),比如测量满意度(从“完全同意”到“完全不同意”5个类别)就是一个定距变量,可以用1-5为各类别赋值,即1 =完全同意、2 =同意、3 =一般、4 =不同意、5 =完全不同意。

对于不能作为定距变量的有序分类变量,比如*的类别(少将、中将、上将、大将等)之间就不是等距的,就不能赋值后对数值进行分析(只能对类别进行分析)。

实际上,将有序分类变量作为连续变量进行分析,这在大多数情况下可能不符合我们的研究目的。对类别进行分析是对有序分类变量相关性分析的常见选择。但是,如果基于的研究背景,待分析的有序分类变量确实可以作为定距变量处理,也是可以的。

Mantel-Haenszel 趋势检验。该检验也被称为Mantel-Haenszel 卡方检验、Mantel-Haenszel 趋势卡方检验。该检验根据研究者对有序分类变量类别的赋值,判断两个有序分类变量之间的线性趋势。

Spearman相关又称Spearman秩相关,用于检验至少有一个有序分类变量的关联强度和方向。

Kendall's tau-b 相关系数是用于检验至少有一个有序分类变量关联强度和方向的非参数分析方法。该检验与Spearman相关的应用范围基本一致,但更适用于存在多种关联的数据(如列联表)。

卡方检验常用于分析无序分类变量之间的相关性,也可以用于分析二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,我们常联合Cramer's V检验提示关联强度。

Fisher精确检验可以用于检验任何R C数据之间的相关关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析精确分布,更适合分析小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。

确定进行两个二分类变量的相关性分析后,我们需要判断是否区分自变量和因变量。

相对风险是流行病学或前瞻性队列研究中的常用指标,可以在一定条件下比较两个比例之间的关系,但其提示的结果是比值而不是差异。

比值比可以计算多类研究的关联强度,也是很多统计检验(如二分类logistic回归)的常用指标。在相对风险指标不适用的病例对照研究中,比值比仍可以很好地反映结果。

卡方检验可用于分析两个二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,该检验可以联合Phi (φ)系数提示关联强度。

Fisher精确检验可以用于检验任何R C数据之间的关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析数据的精确分布,更适用于小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。

Point-biserial相关。Point-biserial相关适用于分析二分类变量和连续变量之间的相关性。其实,该检验是Pearson相关的一种特殊形式,与Pearson相关的数据假设一致,也可以在SPSS中通过Pearson相关模块进行计算,我们会在教程中具体介绍。

确定进行二分类变量和有序分类变量的相关性分析后,我们需要判断是否区分自变量和因变量:

有序Logistic回归。有序Logistic回归在本质上并不是为了分析二分类变量和有序分类变量之间的相关性。但我们仍可以用有序logistic回归及其对应的OR值判断这两类变量之间的统计学关联。

Cochran-Armitage 检验。Cochran-Armitage 检验又称Cochran-Armitage 趋势检验,常用于分析有序分类自变量和二分类因变量之间的线性趋势。该检验可以判断随着有序分类变量的增加,二分类因变量比例的变化趋势,是对其线性趋势的统计学分析。我们将在教程中进一步解释这一问题。

此问题可以使用Mantel-Haenszel卡方检验或Cochran-Armitage趋势检验。Mantel-Haenszel卡方检验也称线性趋势检验(Test for Linear Trend)或定序检验(Linear by Linear Test)。

Mantel-Haenszel卡方检验和Cochran-Armitage趋势检验的区别是:Mantel-Haenszel卡方检验要求一个变量是有序分类变量,另一个变量可以是二分类变量,也可以是有序多分类变量。而Cochran-Armitage趋势检验要求一个变量是有序分类变量,另一个变量是二分类变量。

SPSS不提供Cochran-Armitage趋势检验, Mantel-Haenszel卡方可以得到近似的结果。Cochran-Armitage趋势检验可以在SAS等其它软件中实现(SAS可以同时提供Cochran-Armitage趋势检验和Mantel-Haenszel卡方检验的结果)。

Biserial秩相关:Biserial秩相关可以用于分析二分类变量和有序分类变量之间的相关性。在用二分类变量预测有序分类变量时,该检验又称为Somers' d检验。此外,Mann-Whitney U检验也可以输出Biserial秩相关结果。

Spearman相关。没有适用于分析有序分类变量和连续变量相关性的检验方法,我们需要将连续变量视为有序分类变量进行检验,即分析两个有序分类变量之间的关系。在这种情况下,我们可以应用Spearman相关或者其他针对有序分类变量的检验方法。
正确选择相关性分析的统计方法

相关性分析主要用于:(1)判断两个或多个变量之间的统计学关联;(2)如果存在关联,进一步分析关联强度和方向。 那么,什么样的研究可以进行相关性分析呢?我们在这里列举了几个相关性研究的例子供大家参考: 确定要进行相关性分析后,对两个变量或多个变量进行相关性分析所采取的统计方法是不同的。那么,怎么判断研究变量的...

如何进行相关性分析?

进行相关性分析是统计学中一个重要的环节,它能揭示两个变量之间的关系。首先,我们需解读相关系数显著性检验的概率p值。当p值小于0.05时,通常我们能认为这两个变量之间存在显著相关关系。这意味著在统计学意义上,这两个变量的关联性并非因随机误差而产生。接着,我们需关注相关系数的正负方向。若相关...

如何研究 样本数据 相关性 分析数据规律 统计模型

选择相关性分析模型的方法:1、看数据类型和因变量的个数,多个因变量的用路径分析和结构方程,一个因变量的。2、看数据类型,连续型的数据用线性和非线性,分类型的用逻辑回归,时间序列的用时间序列分析。相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度...

相关性分析怎么做

1.皮尔逊相关系数皮尔逊相关系数是最常用的相关性分析方法之一。它衡量了两个变量之间的线性关系强度和方向。皮尔逊相关系数的取值范围在-1到1之间,接近1表示正相关,接近-1表示负相关,接近0表示无相关。2.斯皮尔曼相关系数斯皮尔曼相关系数也是一种常用的相关性分析方法。与皮尔逊相关系数不同的是,斯...

如何进行相关性分析

相关性分析是一种统计学方法,用于衡量和描述两个或多个变量之间的关系强度和方向。下面是进行相关性分析的一般步骤:1. 收集数据:首先需要收集相关的数据集,包括需要研究的变量数据。数据可以通过调查、实验或观察等方式收集。2. 数据预处理:将数据进行清洗和处理,包括删除缺失值、异常值和离群值,...

如何做相关性分析?

数据录好后,在spss菜单里选择选择:数据——加权个案,在弹出的的对话框里把频数选入加权变量的框里,如下图:然后确定,这一步是做卡方检验前必经的步骤。接下来进行卡方检验,依次选择:分析——描述统计——交叉表,弹出卡方分析的对话框,然后将变量一、二分别选入行变量和列变量,然后点击“统计...

相关性分析有哪些方法?

问题一:用于分析相关性的数学方法有哪些 做散点图,拟合线图,回归分析,然后对散布的点做线性拟合,如果是非线性相关,可以做二阶,三阶甚至多阶拟合。线性相关的情况下,可以计算相关系数,通过相关系数来判定。 问题二:属性相关分析的方法有哪些 在机器学习、统计学、模糊逻辑和粗糙集等领域提出了许多属性相关分析的方...

相关性分析常用方法

1. 打开原始数据表格。2. 选择“工具”-“数据分析”-“描述统计”。3. 设置输入区域为数据区域,选择是否显示标志。4. 选择输出区域,可以是当前表、新工作表或新工作簿。5. 点击“确定”生成相关性报表。问题五:常用的数据分析方法有哪些 常用的数据分析方法包括:1. 对比分析法。2. 聚类分析。...

相关性分析有哪些方法

1,图表相关分析(折线图及散点图)第一种相关分析方法是将数据进行可视化处理,简单的说就是绘制图表。单纯从数据的角度很难发现其中的趋势和联系,而将数据点绘制成图表后趋势和联系就会变的清晰起来。对于有明显时间维度的数据,我们选择使用折线图。2.一元回归及多元回归第二种相关分析方法是回归分析...

在一个实验有多种处理时如何进行相关性分析

当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常...

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
打假人把商家告到法院,打假人没有证据反过来赔偿商家,那么打假人赔偿多 ... wifi密码被别人知道了怎么办? 界定酒驾的标准是什么 nginx怎么实现单应用的并发连接数限制啊??是面向应用的~~~求高手指点... 【部署-04】Nginx的配置说明 花雨旋律国际服如何下载 ...被我删除了,不知道他的网名,也不知道他的QQ号,怎么样能再找回来... 淮南市政务服务中心 淮南市人民政府办公室内设机构 我的孩子英语水平很差,该如何是好呢? 跟风速来!2019年五大银行贷款平台大合集! 微信丰通金融风速贷是正规的吗?怎么感觉像假的 我在风速金融上贷了五万,提现时叫我连系客户,就是连系不上该怎么办? 风速借怎么样 为什么别人在手机贷借钱那么快? 风速贷款怎么样 银行误转100万到自己账户,被网贷扣走的话,到底是谁的责任? 623036110开头是什么银行 拍拍贷的法律通知书是真的吗?还有如果去*打官司我输了是不是只还它本金和利息,现在和拍拍贷协商还钱 有谁知道DHL快递公司的电话啊 股票为什么不建议买四大行? 请问股票为什么不建议买四大行 临汾市洪洞县赵城镇有没有人民银行 Mysta人设画师是谁 公转私,款已经到私人账户了但他不承认怎么办? 买车贷款合同签了可以更改贷款额吗 公转私到账还要缓冲吗 农行行内公转私收款银行已经把款划入收款账号,为什么一直不到账 公转私400百万,付款银行说已经到账,但是我接收方还没到账,付款方让我拿着身份证,银行卡,付款银行 怎麼写一个证明,关於我自愿把工资打到我姐姐的卡上 河北文安农村商业银行股份有限公司怎么样? 河北文安农村商业银行股份有限公司刘么支行怎么样? 河北文安农村商业银行股份有限公司龙街支行怎么样? 河北文安农村商业银行股份有限公司兴文道支行怎么样? 河北文安农村商业银行股份有限公司兴隆宫支行怎么样? 河北文安农村商业银行股份有限公司高头支行怎么样? 文安县左各庄农村信用社的行号是多少 企业发生的银行手续费和利息收入属于经营活动吗 银行存款利息收入是不是应该放在收到的其他与经营活动有关的现金? - 信息提示 昨天装完mastercam X4。也破解完了,进入界面后。弹出一个对话框“错误报告”, 求mastercam x4的安装包及破解包括汉化升级文件的压缩包。 windows7 64位 Mastercam X4 破解文件里的install.bat运行不了,为什么? 32位系统就可以。 怎么区分幼儿园春季班秋季班夏季晚冬季版? 什么是秋季学期和春季学期? 新身份证与旧身份证地址不一样会影响银行卡吗? 如果户口迁移,身份证更换,那以前的身份证所办的银行卡、社保等等的业务会有影响吗? 身份证的地址改了,对于之前办的银行卡有影响吗 小规模取得的航天税盘的专票可以抵扣增值税吗? 小规模纳税人税控服务费可以抵扣吗
  • 焦点

最新推荐

猜你喜欢

热门推荐