哪家服务商GPU更适合深度学习领域?
发布网友
发布时间:2022-04-23 18:47
我来回答
共2个回答
热心网友
时间:2023-10-13 14:32
现在基本上都会选择云服务让电脑上云,租用云服务器的方式来完成深度学习领域需要的高配电脑服务。
总体而言,NVIDIA目前最适合深度学习的GPU是RTX3080和RTX3090。RTX系列显卡对于深度学习来说最大的优势在于专为神经网络设计的运算单元——Tensor Core(张量核心),而RTX30系列性能的提升是上一代产品图灵架构的2倍。
根据测评参数,NVIDIA旗舰显卡RTX3080拥有8704个CUDA核心,272个TMU,88个ROP,以及68个SM。Tensor Core数量达到544个,RT Core为136个。
其中,被称为GPU“猛兽”的RTX 3090 使用代号为 GA102 的核心,和前代泰坦一样拥有 24G 显存,但型号升级为 DDR6X(镁光提供),显存速度 19.5Gbps,384bit 位宽,拥有 10496 个等效 CUDA 核心,相比 GeForce RTX 2080 Ti,3090 的核心数量增加一倍不止。
不过,自2020年9月上市以来,RTX3080和RTX3090一直处于一卡难求的状态,市场价更是涨了7倍,而供货商甚至无法预测具体的供货时间。
对于企业和实验室的科研人员而言,要在预算范围内购买最新的GPU,特别是RTX3080和RTX3090这类旗舰显卡难以实现;进行整机配置时,需要考虑多个因素,比如电源、机箱体积,主板的PCle卡槽等,这时候,云电脑在GPU算力上的选择则更为灵活和方便。
热心网友
时间:2023-10-13 14:33
深度学习是作为机器学习的一个算法而存在,被称为人工神经网络,由于受到算法理论、数据、硬件的制约,多年以来一直都是单层或浅层的网络结构。随着大数据的发展,以及大规模硬件加速设备的出现,特别是GPU的不断提升,使得神经网络重新受到重视。深度学习的发展需要大数据跟计算力的支撑,思腾合力专注于人工智能领域,适用于GPU高性能计算、深度学习训练及推理等场景,覆盖服务器/静音工作站等多种产品形态,能够满足客户全场景需求,80%做人工智能科研等领域研究的重点高校已应用思腾合力的产品,为各专业老师和同学们的科学实验研究提供了优秀的GPU加速解决方案,而且中科院下属各科研机构、研究所等也跟思腾建立了长期的合作关系。你可以去了解看看,思腾合力合作的企业、院校挺多的。