勾股定理最本质的证法是什么?
发布网友
发布时间:2022-04-23 14:48
我来回答
共5个回答
热心网友
时间:2023-09-01 14:45
勾股定理中的数学思想
数学思想是解决数学问题的灵魂,正确运用数学思想也是解题成功的关键。在运用勾股定理解题时,尤其应注重数学思想的运用。那么勾股定理解题时,蕴含了哪些数学思想呢?现就勾股定理中的常用的数学思想举例说明。
一、方程思想
例1 如图1,在矩形ABCD中,AD=6,AB=8,△ABD沿BD对折,交DC于F,求CF的长?
解:由题意得:△ABD≌△EBD,
所以∠ABD=∠EBD。
又因为AB‖DC,
所以∠ABD=∠BDC,
所以∠EBD=∠BDC,
所以BF=DF。
设CF=x,
则BF=DF=8-x。
在Rt△BCF中,
即
解得,
所以
二、分类讨论思想
例2 一个等腰三角形的周长为14cm,一边长4cm,求底边上的高。
解:(1)若4cm为腰长时,则底边长为6cm,则底边上的高。
(2)若4cm为底边长时,则腰长为5cm,则底边上的高。
所以底边上的高。
三、数形结合思想
例3 如图2,在一棵树的10米 高处有两只猴子,其中一只爬下树直向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?
解:设BD=x米,由题意得,
CD=(20-x)米,AC=10米。
在Rt△ACD中,∠CAD=90°,
所以
即,
解方程得米。
则这棵树的高度为()米。
答:这棵树的高度为()米。
四、转化思想
例4 如图3,长方体的长AB=15cm,宽BC=10cm,高BF=20cm,一只蚂蚁如果要沿着长方体表面从点A爬到点G,需要爬行的最短路程是多少?
解:有三种情况:
(1)如图4:
路径AG则为蚂蚁爬行的最短路程,
在Rt△ACG中,
∠ACG=90°,AC=25cm,CG=20cm,则
(2)如图5:
路径AG则为蚂蚁爬行的最短路程,
在Rt△ABG中,
∠ABG=90°,AB=15cm,BG=30cm,则
(3)如图6:
路径AG则为蚂蚁爬行的最短路程,
在Rt△AFG中,
∠AFG=90°,AF=35cm,FG=10cm,则
因为
所以蚂蚁爬行的最短路程为:
勾股定理是人类的瑰宝,数学的奇葩,勾股定理中蕴含了丰富的数学思想,现撷取了勾股定理中的部分数学思想,以起抛砖引玉的作用。
热心网友
时间:2023-09-01 14:45
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上*,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD • BA, ①
由△CAD∽△BAC可得AC2=AD • AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
热心网友
时间:2023-09-01 14:46
你说的这个就是费马大定理:xˇn+yˇn=zˇn (n为n次幂)
数学史上对于天才的数学家费马曾有一段轶事,说是费马在证明费马大定理时,正好写到那一页的页尾时,纸面不够用了,所以有关费马大定理的这本书出版时,只给出了结论,而没有证明过程。于是几百年来人们一直在努力寻找那个因为一时纸不够而没有被记录下来的灵感……然而有幸的是,这个问题在1999年时,已由一个英国的年轻数学家用另外一种方法,即计算机辅助的办法证明了。
关于那个数学上著名的“四色原理”也是在大约同一时期完成的。于是这两个困绕了人类几百年的问题终于有了解答结果。
至于继续探讨初等解法的问题,就象2006年菲尔茨数学奖获得者,证明了“庞加莱猜想”的勇士,唯一华裔,澳大利亚数学家陶哲轩所说,“对于大多数学业余爱好者,需要发展新的数学工具”。
热心网友
时间:2023-09-01 14:47
*,千年的文化就这样被你糟蹋了。勾股定理本身就取决于图形的定理,没有什么最基本的证法,就像π为什么是一个无理数,这就是数与型的特性,如果要说它的最本质的论证就是图形的性质
热心网友
时间:2023-09-01 14:47
值得一提的是 勾股定理不仅是一个重要的几何定理 更重要的是 在历史上 由它所发展出了重要的物理数的概念 在勾股定理出来之前 人们相信 数只包括只有整数和整数比(如1是整数.1/3就是整数的比),勾股定理后 人们发现 等边长为一的等腰直角三角形的弦长既不是整数也不是整数与整数的比值 人们在此基础上发现了无理数 扩大了对数的认识范围 并由此奠定了现代高等数学的重要基础
赵爽
•东汉末至三国时代吴国人
•为《周髀算经》作注,并著有《勾股圆方图说》。
赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”
参考资料:http://www.ksqygzx.com/gudl/zhaoshang.htm
勾股定理的实质?
后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 ...
勾股定理的三种证明方法
几何法是最早被使用来证明勾股定理的方法之一。它的基本思想是通过构造几何图形来证明。具体步骤如下:假设有一个直角三角形,三个边分别为a、b、c,其中c为斜边。构造一个正方形,其边长为a+b,将正方形分成若干小三角形和四边形。利用几何知识证明这些小三角形和四边形的面积之和等于正方形的面积。...
勾股定理四种证法
勾股定理是一个数学定理,它最初由古希腊数学家几何学家勃兰特提出,他证明了任何三角形的一条直角边的平方等于另外两条斜边的平方之和。公式表示为a^2 + b^2 = c^2,其中c为直角边,a和b是斜边。勾股定理的四种证明方法如下:1.几何方法:几何方法是最简单的证明方法之一,它是根据几何原理,从...
勾股定理的证明方法
4、三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。5、相似三角形法:利用相似三角形的性质,证明勾股定理。6、矩形法:将一个直角三角形内切于一矩形中,从而证明勾股定理。7、差积公式法:利用差积公式(a+b)(a-b)=a-b,证明勾股定理。8、面积法:利用直角三角形的两条直...
两种不同的方法证明勾股定理
欧氏证法,是从面积角度证明勾股定理;以为直角形三条边的长度做正方形,可以发现,两个直角边的正方形面积之和等于斜边的面积。射影定理证法,是从相似角度证明勾股定理,本质上一样的,也算得上是殊途同归。在RTΔABC中,CD是斜边AB上的高,则AC^2=AD*AB ,BC^2 =BD*AB ,所以两式相加得AC^...
勾股定理的证明方法
勾股定理的证明方法如下:求证:勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。证明:分两种情况来讨论,即两条直角边长度不相等与相等。两条直角边长度不相等。如图,分别设直角三角形的边长为a、b、c,(a
证明勾股定理的方法5种
勾股定理证明方法有:正方形面积法、赵爽弦图验证法、梯形证明法、欧几里得证明法、面积割补法等。勾股定律是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。正方形面积法 做8...
勾股定理的三种证明方法是什么啊
一,毕达哥拉斯证法 二,赵爽证法 三,将直角三角形与其它三角形拼成直角梯形,然后就根据梯形面积证出勾股定理。
证明勾股定理的常用方法是
勾股定理是初中数学中非常基础的定理,它描述了直角三角形三个边长之间的关系,即直角边的平方和等于斜边的平方。在实际应用中,勾股定理是非常重要的,因此证明勾股定理的方法也是非常重要的。常用的证明方法有以下几种:一、几何证明法 几何证明法是最早被使用的证明勾股定理的方法。它基于几何图形的性质...
勾股定理的证明三种方法
勾股定理的证明 【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .【证法2】(邹元治证明...