二阶混合偏导数是什么?
发布网友
发布时间:2022-04-20 08:20
我来回答
共1个回答
热心网友
时间:2024-01-11 22:13
二阶偏导数就是对函数关于同一个自变量连续求两次导数,即d(dy/dx)/dx,二阶混合偏导数就是对函数先关于其中一个自变量求一次导数,再在此基础上关于另一个自变量求一次导数,d(dy/dx1)/dx2,高阶偏导数依此类推。
注意:
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数。
把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。同样,把x固定在x0,让y有增量△y,如果极限存在那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作f'y(x0,y0)。
求二阶混合偏导数,要详细
二阶混合偏导数是u=abcxyz∂;u/∂x=abcyz∂u/∂y=abcxz∂u/∂z=abcxy,对于一个多项式函数来说,指的就是xy项的系数。对于一般的光滑函数来说,指的是其二阶逼近中xy项的系数。一定程度上(在二阶逼近意义上)指的是这个函数可以表示成:f(x,y)=g(x)...
什么是二阶偏导数,二阶混合偏导数,高阶偏导师数啊 请通俗一点
二阶偏导数就是对函数关于同一个自变量连续求两次导数,即d(dy/dx)/dx 二阶混合偏导数就是对函数先关于其中一个自变量求一次导数,再在此基础上关于另一个自变量求一次导数,即d(dy/dx1)/dx2 高阶偏导数依此类推.
二阶混合偏导怎么求,举例说明例题
二阶混合偏导数是指在多元函数中,对于两个不同的自变量求两次偏导数的结果。计算二阶混合偏导数需要按照以下步骤进行:1. 首先对于原函数进行一次偏导数,得到一个新的函数。2. 对于新的函数再次进行一次偏导数,得到二阶偏导数。3. 对于二阶偏导数,再次对于另一个自变量进行一次偏导数,得到二阶混合...
求二阶混合偏导数怎样求
二元函数z=f(x,y)的二阶偏导数共有四种情况:(1)∂z²/∂x²=[∂(∂z/∂x)]/ ∂x;(2)∂z²/∂y ²=[∂(∂z/∂y)]/ ∂y;(3)∂z²/(∂y ∂...
为什么二阶混合偏导数一定相等?
只要二阶可导,混导就一定相等。也就是说,二阶混导的结果跟求导的顺序无关。2、二阶混导相等的证明,有两种方法:A、根据偏导数的定义证明;B、运用导数中值定理证明。代数记法:二阶导数记作:即y''=(y)。例如:y=x²的导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
二阶混合偏导数的意义?
即黑色平面,同时由于x的固定,又会截出一条曲线,即粉实线。固定之后求导,即二阶混合偏导数,即粉实线的导数。而二阶偏导数之所以没有出现x0,y0等字眼,我想应该是因为x等先固定又解固,无法准确的用一个x0代表两个相反过程。而二阶非混合偏导数,其中一个元一直是固定的,我想应该是可以写成y0...
大学高数题 偏导数, 什么是二阶混合偏导数? 详细解释一下,我看不懂...
高阶偏导数:如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy.注意:f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;...
二阶混合偏导数详细过程是什么?
1、对于任何二元函数,只要二阶可导,混导就一定相等。也就是说,二阶混导的结果跟求导的顺序无关。2、二阶混导相等的证明,有两种方法:A、根据偏导数的定义证明;B、运用导数中值定理证明。代数记法:二阶导数记作:即y''=(y)。例如:y=x²的导数为y'=2x,二阶导数即y'=2x的导数...
二阶混合偏导数的作用有哪些呢?
二阶混合偏导数在函数中的作用:1、描述函数的非线性特征:二阶混合偏导数描述了函数在某一点处沿着两个不同方向的导数变化率,可以用来判断函数的非线性特征。如果二阶混合偏导数大于零,说明函数在该点处呈现出上凸的形状;如果二阶混合偏导数小于零,说明函数在该点处呈现出下凹的形状。2、计算函数...
求助:二阶混合偏导数
不一定驻点既是对x,y的一阶偏导数等于0的点在该点是否取得极值由AC-B^2的正负给出,A=fxx,B=fxy,C=fyy。 查看原帖>>