发布网友 发布时间:2022-04-20 01:24
共1个回答
热心网友 时间:2023-10-06 07:34
结构特点:神经网络(neuralnetworks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(poolinglayer,又叫下采样层)。
卷积神经网络(ConvolutionalNeuralNetwork,CNN或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(ReceptiveField)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。
-卷积步长设置(StridedCOnvolution)卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。
卷积神经网络的基本结构由以下几个部分组成:输入层,卷积层,池化层,激活函数层和全连接层。
我们在卷积神经网络中使用奇数高宽的核,比如3×3,5×5的卷积核,对于高度(或宽度)为大小为2k+1的核,令步幅为1,在高(或宽)两侧选择大小为k的填充,便可保持输入与输出尺寸相同。