卷积神经网络算法是什么?
发布网友
发布时间:2022-04-20 01:24
我来回答
共1个回答
热心网友
时间:2024-01-29 23:32
基础知识讲解:
卷积:通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
前馈神经网络:各神经元分层排列,每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层.各层间没有反馈。
卷积神经网络:是一类包含卷积计算且具有深度结构的前馈神经网络
卷积核:就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
下采样:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。
结构介绍
输入层:用于数据输入
卷积层:利用卷积核进行特征提取和特征映射
激励层:非线性映射,卷积是线性映射,弥补不足
池化层:进行下采样,对特征图稀疏处理,减少数据运算量
全连接层:在CNN的尾部进行重新拟合,减少特征信息的损失
输入层:
在CNN的输入层中,(图片)数据输入的格式 与 全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入格式保留了图片本身的结构。
对于黑白的 28×28 的图片,CNN的输入是一个 28×28 的的二维神经元:
而对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的三维神经元(RGB中的每一个颜色通道都有一个 28×28 的矩阵)
卷积层:
左边是输入,中间部分是两个不同的滤波器Filter w0、Filter w1,最右边则是两个不同的输出。
ai.j=f(∑m=02∑n=02wm,nxi+m,j+n+wb)
wm,n:filter的第m行第n列的值
xi,j: 表示图像的第i行第j列元素
wb:用表示filter的偏置项
ai,j:表示Feature Map的第i行第j列元素
f:表示Relu激活函数
激励层:
使用的激励函数一般为ReLu函数:
f(x)=max(x,0)
卷积层和激励层通常合并在一起称为“卷积层”。
池化层:
当输入经过卷积层时,若感受视野比较小,布长stride比较小,得到的feature map (特征图)还是比较大,可以通过池化层来对每一个 feature map 进行降维操作,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野(filter)”来对feature map矩阵进行扫描,对“池化视野”中的矩阵值进行计算,一般有两种计算方式:
Max pooling:取“池化视野”矩阵中的最大值
Average pooling:取“池化视野”矩阵中的平均值
训练过程:
1.前向计算每个神经元的输出值aj( 表示网络的第j个神经元,以下同);
2.反向计算每个神经元的误差项σj,σj在有的文献中也叫做敏感度(sensitivity)。它实际上是网络的损失函数Ed对神经元加权输入的偏导数
3.计算每个神经元连接权重wi,j的梯度( wi,j表示从神经元i连接到神经元j的权重)
1.最后,根据梯度下降法则更新每个权重即可。
参考: https://blog.csdn.net/love__live1/article/details/79481052
cnn是什么意思啊
卷积神经网络是一种深度学习算法,主要用于处理图像和视频等二维数据。它通过模拟人脑视觉系统的神经元结构,对输入数据进行层次化的特征提取和分类。卷积神经网络广泛应用于计算机视觉、自然语言处理、语音识别等领域。具体来说,CNN主要由卷积层、池化层和全连接层等基本结构组成。卷积层通过卷积运算提取输入数...
卷积神经网络是干嘛的
1. 卷积神经网络(CNN)是深度学习领域的一种核心算法,它包含卷积计算并具有深层结构。2. CNN以其阶层结构对输入信息进行平移不变处理,这使得它能够在图像识别等领域表现出色。3. CNN的研究起源于20世纪80至90年代,当时的时间延迟网络和LeNet-5是最早的CNN形式。4. 进入21世纪后,随着深度学习理论...
卷积神经网络通俗理解
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classificati...
卷积神经网络
卷积神经网络是一种深度学习的算法模型,特别适用于处理图像相关的任务。它通过卷积运算,能够从输入图像中提取出特征,并逐层抽象,最终得到高级特征表示,用于图像分类、目标检测等任务。卷积神经网络的主要特点包括局部感知、权值共享和池化操作。局部感知是指CNN在图像处理时,每个神经元只关注输入图像的局部...
卷积层在神经网络中如何运算?
卷积神经网络(Convolutional Neural Networks, CNN)的核心是进行卷积运算操作。在实际应用中往往采用多层网络结构,因此又被称为深度卷积神经网络。本文将从单个卷积的计算出发,带大家掌握卷积层在神经网络中的运算方法。 2.1 单个卷积的计算 要想了解卷积层在神经网络中的计算过程,我们首先需要了解单个“卷积”是如何运作...
cnn卷积神经网络通俗理解
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络;在二十一世纪后,随着深度学习...
卷积神经网络(CNN)详细公式推导
在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNN)因其在图像识别、语音识别、自然语言处理等领域的卓越表现而备受推崇。相较于线性回归和逻辑回归等传统机器学习模型,CNN 更适用于处理具有局部结构和空间位置特征的数据。然而,由于其抽象实现过程的复杂性,CNN 的推导过程往往显得较为困难...
cnn有哪几种
CNN是指卷积神经网络(Convolutional Neural Network),是人工智能领域中一个重要的算法。它已经被应用于各种领域,例如计算机视觉、语音识别和自然语言处理等。那么,CNN有哪几种呢?本文将为您详细介绍。1. 常规的卷积神经网络 常规的卷积神经网络是指由若干个卷积层、池化层和全连接层组成的网络。卷积层...
卷积神经网络(CNN)——图像卷积
在图像处理领域,卷积神经网络(CNN)凭借其独特的优势脱颖而出,它巧妙地解决了参数过多、结构信息提取和高维输入训练难题。CNN的核心在于其结构特征的提取能力,这主要得益于其核心组件——卷积层。卷积层:智能结构探索卷积层通过互相关运算,像一个移动的“窗口”在输入张量上滑动,与核张量进行深度交互...
卷积神经网络
我们在卷积神经网络中使用奇数高宽的核,比如3×3,5×5的卷积核,对于高度(或宽度)为大小为2k+1的核,令步幅为1,在高(或宽)两侧选择大小为k的填充,便可保持输入与输出尺寸相同。 4.2 步幅(stride) 在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1...