问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

数据仓库与数据库的区别

发布网友 发布时间:2022-04-20 00:58

我来回答

2个回答

热心网友 时间:2022-04-08 06:31

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。

单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看W.H.Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。

数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。

1.效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。

2.数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。

3.扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

参考资料:http://www.cublog.cn/u/674/showart.php?id=196808

热心网友 时间:2022-04-08 07:49

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:

    整合公司所有业务数据,建立统一的数据中心;

    提供各种报表,有给高层的,有给各个业务的;

    为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

    为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

    分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

    开发数据产品,直接或间接为公司盈利;

    建设开放数据平台,开放公司数据;

    。。。。。。


    上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;


    其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;


    建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。


    整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:


    请点击输入图片描述

    逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。


    我们从下往上看:


    数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。



    数据源的种类比较多:


    网站日志:


    作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,


    一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;


    业务数据库:


    业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapRece来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。


    当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。


    来自于Ftp/Http的数据源:


    有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;


    其他数据源:


    比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;



    数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。



    离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapRece要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;


    当然,使用Hadoop框架自然而然也提供了MapRece接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapRece来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapRece要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》


    实时计算部分,后面单独说。


    数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;



    前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。


    另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。



    数据应用

    业务产品


    业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;


    报表


    同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;


    即席查询


    即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;


    这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。


    即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。


    当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。


    OLAP


    目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;


    这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;


    比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。


    其它数据接口


    这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。



    实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。


    我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。


    做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。


    任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;



    这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。


    前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。


    总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

    请点击输入图片描述

    请点击输入图片描述

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
win10怎么设置人脸识别登录系统? Win10系统开启WindowsHello功能的方法 windows hello人脸识别设置教程 渭南必去的十个景点_渭南市区景点 渭南市区必游三个景点 58同城怎么认证营业执照 资格认证很重要 为什么抖音小店上架产品需要品牌资质?没有资质怎么办? 抖音小店的品牌资质要求包含什么内容?对开通抖音小店有什么影响? 企业品牌推广 梦幻西游五无底洞攻略梦幻西游五底洞攻略详解 大数据决策与传统的基于数据仓库的决策有什么区别? 安卓手机可以CAD看图吗?怎么查看接收的CAD图纸文件? 大数据与传统数据仓库有什么区别 大数据时代的数据仓库与传统数据仓库本质的区别是什么 WIN10我的电脑图标丢失怎么办 win10我的电脑图标没了怎么恢复 win10怎么恢复我的电脑图标不见了 iPhone 的短信全消失了,我没删啊!求助啊! 为什么我的iphone短信都不见了 我的苹果5手机短信息为什么会自己没有掉,就是所有... 苹果手机短信没有提示 苹果手机为什么没有开流量收不到短信 苹果message已经激活了 为什么跟苹果发短信还是短... 新买的苹果5s怎么没有流量短信提醒了? 苹果6发短信为什么不走流量了? 拼多多上买了飞机杯倒了会发什么消息样你去哪 新的飞机杯用之前要洗吗 第一次要带套吗 飞机杯几天没洗 用飞机杯过安检会被查出来吗? 飞机杯不带套可以吗 用润滑油有什么作用 数据仓库,大数据和云计算有什么区别和联系 数据仓库和大数据一样吗,概念好抽像啊 哪位大哥能解释大数据与数据仓库之间的关系?(求... 数据仓库,大数据和云计算的区别与联系 数据仓库和大数据有什么关系 数据库,数据仓库,大数据三个术语的含义 银行为什么不直接用大数据平台取代传统数仓 BI,数据仓库,ETL,大数据开发工程师有什么区别 陕西师范大学事业单位招聘13号现场报名 陕西省事业单位什么时候考试呢?每年招多少人呢? 2021铜川事业单位D类录取分数 2021年陕西公务员招录的省直单位咸阳市养老基金保... 苹果手机怎么查看CAD建筑图纸? 文都考研高等数学基础班汤家凤,非同济版视频什么... 小学六年级之前学过的所有相关联的量 求《JOJO的奇妙冒险》中DIO穿开背毛衣的图 求一些JOJO的奇妙冒险里DIO的壁纸 《JOJO的奇妙冒险》dio作为boss,为何替身面板比主... dio是什么意思? jojo的奇妙冒险中dio是个怎样的人?
  • 焦点

最新推荐

猜你喜欢

热门推荐