发布网友 发布时间:2022-04-28 14:42
共2个回答
热心网友 时间:2022-06-19 05:52
弧微分公式只要记住从勾股定理出发的基本公式,就可得到我们常见的公式,或者稍加推导得到参数坐标、极坐标系下的弧微分公式。
你的提问中并没有给出图片,所以不知“红线”的具体公式是什么;个人猜测问的是极坐标系的弧微分公式,参考推导过程:
扩展资料
曲线积分分为:
(1)对弧长的曲线积分 (第一类曲线积分)
(2)对坐标轴的曲线积分(第二类曲线积分)
两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,
例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号
参考资料来源:百度百科:曲线积分
参考资料来源:百度百科:
热心网友 时间:2022-06-19 05:52
弧微分公式只要记住从勾股定理出发的基本公式,就可得到我们常见的公式,或者稍加推导得到参数坐标、极坐标系下的弧微分公式。
你的提问中并没有给出图片,所以不知“红线”的具体公式是什么;个人猜测问的是极坐标系的弧微分公式,参考推导过程: