问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
你好,欢迎来到懂视!登录注册
当前位置: 首页 - 正文

php怎么处理高并发

发布网友 发布时间:2022-04-20 02:03

我来回答

2个回答

懂视网 时间:2022-04-28 05:39


假设报考app是用5W rmb 向供应商采购,报名当天涌入海量考生,并发数飙升至30W+,导致系统宕机,拒绝服务,致使考生无法报名,那么5W rmb 能否支持30W+并发呢?

不过对于我们来说,不妨把问题上升一个角度:「如何在有限的资源里最大提升服务器并发能力」。假设你是一名技术负责人,你在面对一个并发量较大的项目时会如何设计和架构呢?

首先我们可以针对这个项目捋一下大体的思路,从上述描述中不难看出,该项目的瓶颈在于「并发写」而非「读」,因此从资源分配上我们可以向「写」倾斜,在此我将数据全部写入在Redis中。除此之外,我们也需要尽量的将MySQL的读操作迁移到Redis上来,MySQL所做的工作更倾向于一些常规非并发的读写操作。

服务器

当用户请求过来,由负载均衡器负载到各个服务器上

这是一张来自symfony的压测数据,使用的是1 CPU, 4 GB and PHP 7的配置。

上图的数据来自于swoole官网,在加上我们在实际业务逻辑的执行之后,可以发现,当我们在使用常驻内存的启动方式时,3台更低配服务器就能解决上述需要16台才能解决的问题。

数据库

其实许多人在接触后端有一定的阶段之后都会了解,现在的许多互联网项目的瓶颈更多的集中在数据库I/O这块,各个语言之间并没有特别大的差距。包括广被大家所诟病的PHP-FPM的启动方式,也可以使用swoole等方式来替代。因此,在这个项目中,会将更多的把精力集中于数据库这一块,可以尝试使用Redis来解决,当然,在具体代码中,也需要提前准备好一定数量的数据连接池。 另外,也考虑MongoDB虽然在同等配置下的写入速度要比MySQL快得多,但是相比于Redis,还是存在明显不足。

注册登录

注册和登录其实应该分成两块来讲,二者分别对应的是「写」和「读」。在高并发读写情况下,直接使用MySQL,如你期待的那样,会爆。因此,我们在构建整个项目的过程中,可以将用户数据缓存到Redis中。 「写」的问题:在用户数量不明确且并发量较大的情况下,我更倾向于用户数据不直接入库。我们可以设计一个开关或阈值,来设置用户的入库方式,当并发大的情况下可以通过MQ来异步让用户入库,而平时则可以正常入库。

提交表单

因为该项目并非我们所常见的秒杀,且需要即时通知的,因此给我们项目的设计大大减少了难度。在提交表单的功能也跟注册类似,我们完全可以让数据异步入库,然后后台审核。

总结

其他的像CDN、MySQL是否需要主从之类的就不再赘述了,视实际情况而定。从理论上,如果使用PHP-FPM的方式,大概需要19000元/月来解决项目的这个问题,而当使用swoole时,大概需要4500元/月,在这里并没有鼓吹swoole,想说明的是当我们在面对大并发项目时,尤其是业务逻辑相对复杂,我们使用常驻内存更能解决问题,而这与语言无关。 最后,需要说明的是,上述仅是理论阶段,至于实际数据如何都需要进一步检验。文章素材来源于网络,如果有写的不正确的地方,望指出。

热心网友 时间:2022-04-28 02:47

以下内容转载自徐汉彬大牛的博客 亿级Web系统搭建——单机到分布式集群 

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。

Web负载均衡 

Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。

负载均衡的策略有很多,我们从简单的讲起哈。

1. HTTP重定向

当用户发来请求的时候,Web服务器通过修改HTTP响应头中的Location标记来返回一个新的url,然后浏览器再继续请求这个新url,实际上就是页面重定向。通过重定向,来达到“负载均衡”的目标。例如,我们在下载PHP源码包的时候,点击下载链接时,为了解决不同国家和地域下载速度的问题,它会返回一个离我们近的下载地址。重定向的HTTP返回码是302

这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。

2. 反向代理负载均衡

反向代理服务的核心工作主要是转发HTTP请求,扮演了浏览器端和后台Web服务器中转的角色。因为它工作在HTTP层(应用层),也就是网络七层结构中的第七层,因此也被称为“七层负载均衡”。可以做反向代理的软件很多,比较常见的一种是Nginx。

Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。

解决方案主要有两种:

1. 配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。

2. 将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。

反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。

3. IP负载均衡

IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(Linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。

在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。 

上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。

IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。

4. DNS负载均衡

DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。

这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。 

5. DNS/GSLB负载均衡

我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。 

“向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如.com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。

CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/图片等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。

例如,我访问了一张imgcache.gtimg.cn上的图片(腾讯的自建CDN,不使用qq.com域名的原因是防止http请求的时候,带上了多余的cookie信息),我获得的IP是183.60.217.90。 

这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。 

Web系统的缓存机制的建立和优化

刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。

最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。 

我们从最根本的数据存储开始看哈。

一、 MySQL数据库内部缓存使用

MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。

1. 建立恰当的索引

最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等操作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询操作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。

2. 数据库连接线程池缓存

如果,每一个数据库操作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。 

其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。 

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

3. Innodb缓存设置(innodb_buffer_pool_size)

innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。

4. 分库/分表/分区。

MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等操作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。 

二、 MySQL数据库多台服务搭建

1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。

1. 建立MySQL主从,从库作为备份

这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。

2. MySQL读写分离,主库写,从库读。

两台数据库做读写分离,主库负责写入类的操作,从库负责读的操作。并且,如果主库发生故障,仍然不影响读的操作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。 

3. 主主互备。

两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。 

不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。

三、 MySQL数据库机器之间的数据同步

每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。

于是,解决同步问题,就是我们下一步需要关注的点。

1. MySQL自带多线程同步

MySQL5.6开始支持主库和从库数据同步,走多线程。但是,*也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的操作,是具有顺序的,尤其当SQL操作中含有对于表结构的修改等操作,对于后续的SQL语句操作是有影响的。因此,从库同步数据,必须走单进程。

2. 自己实现解析binlog,多线程写入。

以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。 

国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到*,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。 

四、 在Web服务器和数据库之间建立缓存

实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。 

1. 页面静态化

用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。

在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。

2. 单台内存缓存

通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value操作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。

内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。 

3. 内存缓存集群

当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。

Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。 

对于使用缓存服务的客户端来说,这一切是透明的。

内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。

4. 减少数据库“写”

上面的机制,都实现减少数据库的“读”的操作,但是,写的操作也是一个大的压力。写的操作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。

先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。 

除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Rendant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。

5. NoSQL存储

不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。

这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。 

国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。

6. 空节点查询问题

当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。

在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。

我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。 

异地部署(地理分布式)

完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。

一、 核心集中与节点分散

有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。

当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。

这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。

· 核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。

· 节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。

例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图: 

需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。 
国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。 

二、 节点容灾和过载保护

节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。

过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。

解决过载保护,一般2个方向:

· 拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。

· 分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。

小结

Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。

系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。

用PHP编写支持高并发的网站,需要做什么处理?

PHP语言开发高并发的网站,需要加缓存,复杂逻辑走消息队列异步处理,mysql查询必须走索引,还搞不定就加机器分流,mysql配置升高并且一主多从,使用codis集群,增加消息队列的消费者,如果还搞不定就随机拒绝请求,当然这是最后的退路。缓存 缓存是避免业务查询过多的请求mysql,导致业务不可用,根据场景来...

php高并发是什么意思

提高PHP高并发性能的方法主要包括多方面的工作,如Apache或NGINX的服务器优化、数据缓存的使用、大量数据实时查询技术和异步通讯编程等。除此之外,还需要对代码进行分析优化,尤其是需要关注各个调用的依赖性,以保证系统能够处理大量的请求和并发请求。

用PHP 编写支持高并发的网站,需要做什么处理

缓存策略与程序耦合度较高,不赘述,但简单地说有两种方式,一种是在程序的全局层面加一个缓存处理,这种方法代码耦合度低,但是有效命中率不高,有些项目不一定适应,另一种是在具体的数据存取处加缓存处理,这种办法程序耦合度较高,

php开发,用laveral开发处理一些高并发性的任务,有哪些隐

而Laravel内置HTTP服务器,使用方法仅需执行命令 `php -S 127.0.0.1:8080 -t /www` 即可启动,其运行模式与PHP-FPM类似,专用于测试与开发,而非内存常驻运行模式。谈及异步与定时器功能,若Laravel仅依赖PHP内置特性,则实现难度较大。PHP对异步支持不足,这限制了Laravel在性能和异步处理上的竞争...

用PHP 编写支持高并发的网站,需要做什么处理

PHP支持高并发很多时候不是光靠PHP的。具体根据你的业务逻辑,下面列一些例子:数据库层面,表结构必须合理,尽量避免联表查询,能够缩短处理时间 配置额外图片服务器或使用cdn,降低服务器压力 使用缓存处理类似抢购、投票等高并发请求,如redis。消息队列处理耗时较久的请求,如发邮件等 必要时使用多台服务...

高并发下php+nginx cpu和负载高怎么优化

解决办法主要是围绕系统优化,优化开机启动项、尽量避免开启太多程序等等。2、硬件方面导致的CPU使用率高 其实硬件方面决定着比较大的关系,比如如果电脑还是老爷机,采用最初的单核赛扬级处理器,那么这样的电脑,在多开启几个网页的情况下就容易导致CPU使用率过高,不管你怎么优化系统,这个问题始终无法很好...

高并发架构技术解决方案?

PHP站点层可以通过修改nginx.conf实现负载均衡机制来进行水平扩展。从而设置多个web后端。服务层可以通过服务连接池来进行水平扩展;这里一部需要实现服务化,PHP像swoole tarsphp等数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展;那高并发架构是什么样的?常见互联网分布式架构如上,分为:(1)...

PHP 网站如何解决网站大流量、高并发的问题?

memcache,页面静态化,对固定不变的页面采用静态处理,对数据库高并非,高访问,采取memcache技术,减轻对数据库的访问。

PHP高并发下单用事务可以解决吗

事物不是解决高并发的。事物是为了一个操作的完整性才使用的。php的高并发在我看主要以来php脚本的执行速度,以及对数据库的数据访问的次数,还有缓存系统的使用(包括数据缓存以及模板缓存),系统架构的优化。还有就是web服务器做负载均衡,域名cdn做负载均衡等。

django的高并发怎么处理?

本地的话runserver就好了,但是在线上还是得更改启动方式应对高并发. 传统的uwsgi不支持websocket. gunicorn好像可以同时支持websocket,但是性能不太ok 这里我们用daphne 这里需要额外开个服务,专门负责处理websocket. ingress中要配置路由跳转 结语:以上就是首席CTO笔记为大家介绍的关于django的高并发怎么处理的全部内容了,希...

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
梦到儿子穿我的毛衣是怎么回事 大一就入党是不是太快了? 大一新生可以入党么? 大学生入党需要什么条件呢 如何查看钉钉上班记录? 手机刷机,出现绿色机器人,还有红色三角,里面有个感叹号! 然后要怎么... 大众点评全国家装家居店铺POI采集184万家-2024年5月底 九十平米的房子简装修需要多少钱简装时要注意什么 九十平米的房子装修多少钱装修房子有哪些花费项目 是什么意思用英语怎么说Well i don\'t do MSN cam or any other cam b... 互联网创业公司如何应对高并发和 DDoS 攻击 项目中怎么控制多线程高并发访问 并发量超过队列最大值,如何解决? 知道ID和用户名微信登陆的怎么加人 并发处理技巧,创业公司如何解决高并发问题,互联网高 如何处理高并发重复数据检查的问题 如何处理java高并发问题 今天被问到怎么解决高并发问题 java 项目开发中中如何解决高并发问题 谈论java中怎样处理高并发的问题 JAVA中高访问量高并发的问题怎么解决? c++ 如何解决高并发问题 如何处理PHP高并发问题 如何解决高并发问题 美容师是做什么的? 高级美容师资格证可以积分入户吗你好?美容师证在... 学美容要学多久可以成为美容师? 怎样成为一位优秀的美容师? 美容师入五万分红怎么分? 美容师前景好吗? 如何运用docker技术解决高并发 Net+SqlServer 怎么解决 大数据量 高并发问题 北京君太百货的楼层介绍 西单君太百货5楼都有哪些西装品牌,有大神解答下吗 北京君太百货的企业简介 在北京商场男装品牌哪家的最好 北京君太百货都有什么美食 谁知道hazzys在北京的所有店? Traditional+Weatherwear中国哪里有专柜 西单附近都有什么商场,营业时间几点到几点? 北京百货商场都有哪些 北京西单的有哪些商场 北京哪个商场男装品牌多 想知道君太百货上楼一个女装的品牌 北京西单君太百货有Gucci专卖店吗? 西单君太百货 求君太百货一层某女鞋牌子 西单有哪些卖衣服的大商场? 北京所有的大型商超都有哪些? 锄头的做法手工
  • 焦点

最新推荐

猜你喜欢

热门推荐