python数据分析方向的第三方库是什么
发布网友
发布时间:2022-04-20 07:19
我来回答
共2个回答
热心网友
时间:2022-04-18 02:47
Python除了有200个标准库以外,还有10万个第三方扩展库,囊括了方方面面。其中做数据分析最常用到的库有4个:
Numpy
Numpy是Python科学计算的基础包。它除了为Python提供快速的数组处理能力,还是在算法和库之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的 Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy 数组中的数据,无需进行任何数据复制工作。因此,许多Python的数值计算工具要么使用NumPy 数组作为主要的数据结构,要么可以与NumPy进行无缝交互操作。
Pandas
Pandas提供了快速便捷处理结构化数据的大量数据结构和函数,兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。因为数据操作、准备、清洗是数据分析最重要的技能,所以Pandas也是学习的重点。
Matplotlib
Matplotlib是最流行的用于绘制图表和其它二维数据可视化的Python库,它非常适合创建出版物上用的图表。虽然还有其它的Python可视化库,但Matplotlib却是使用最广泛的,并且它和其它生态工具配合也非常完美。
Scikit-learn
Scikit-learn是Python的通用机器学习工具包。它的子模块包括分类、回归、聚类、降维、选型、预处理,对于Python成为高效数据科学编程语言起到了关键作用。
热心网友
时间:2022-04-18 04:05
1、Numpy
Numpy是Python科学计算的基础包,它提供了很多功能:快速高效的*数组对象ndarray、用于对数组执行元素级计算以及直接对数组执行数*算的函数、用于读写硬盘上基于数组的数据集的工具、线性代数运算、傅里叶变换以及随机数生成等。NumPy在数据分析方面还有另外一个主要作用,即作为在算法和库之间传递数据的容器。
2、Pandas
Pandas提供了快速便捷处理结构化数据的大量数据结构和函数。自从2010年出现以来,它助使Python成为强大而高效的数据分析环境。其中用得最多的Pandas对象是DataFrame,它是一个面向列的二维表结构,另一个是Series,一个一维的标签化数组对象。Pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据库灵活的数据处理功能。还提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。
3、matplotlib
matplotlib是最流行的用于绘制图表和其他二维数据可视化的Python库。它最初由John D.Hunter(JDH)创建,目前由一个庞大的开发团队维护。它非常适合创建出版物上用的图表。虽然还有其他的Python可视化库,但matplotlib应用最为广泛。
4、SciPy
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,它与Numpy结合使用,便形成了一个相当完备和成熟的计算平台,可以处理多种传统的科学计算问题。
5、scikit-learn
2010年诞生以来,scikit-learn成为了Python通用机器学习工具包。它的子模块包括:分类、回归、聚类、降维、选型、预处理等。与pandas、statsmodels和IPython一起,scikit-learn对于Python成为高效数据科学编程语言起到了关键作用。
6、statsmodels
statsmodels是一个统计分析包,起源于斯坦福大学统计学教授,他设计了多种流行于R语言的回归分析模型。Skipper Seabold和Josef Perktold在2010年正式创建了statsmodels项目,随后汇聚了大量的使用者和贡献者。与scikit-learn比较,statsmodels包含经典统计学和经济计量学的算法。